自动伽马校正(Auto Gamma Correction)算法

自动伽马校正(Auto Gamma Correction)算法

微信公众号:幼儿园的学霸

目录

理论

在对图像进行处理过程中,查找到一篇对图像进行自动gamma校正的论文,论文名称及链接见参考文献1.

文章的核心描述如下:

Average of brightness is simple element that can be computed in the least amount of time. Basic approach in this article present a technique to estimate appropriate gamma based on average brightness. …, We suppose a gamma which changes average of brightness to 1/2, …

其大概意思是:假定一副合理的图像其所有像素(归一化后)的均值应该在0.5左右,那么自动伽马校正的伽马值就要使得目标图像向这个目标前进。
假设X是图像的平均值,那么自动伽马校正所需要的伽马值应该基于下列公式进行计算:
公式
公式描述

根据论文描述:

This paper proposes a method which estimates a power that transport average amount of brightness to center of histogram.

即通过自动gamma校正后图像的灰度直方图将向中心进行偏移。

代码实现

按照上述公式,可以很快实现该算法。代码如下。
1.在实现过程中,采用了查找表的思想,以加快图像处理速度。
2.针对多通道图像,对各通道的gamma再次进行求均值,作为gamma校正的gamma值,以避免多通道图像的偏色现象。该修改在原论中并不存在。

//
// Created by liheng on 11/22/20.
//

#include <iostream>
#include <chrono>
#include <opencv2/opencv.hpp>

//自动Gamma校正算法
//Input Param:src--输入图像,3 channels or 1channels
//Output Param:dst--归一化后的图像,type as src
//Return:   null
void AutoGammaCorrection(const cv::Mat &src, cv::Mat &dst)
{
    const int channels = src.channels();
    const int type = src.type();
    assert( type==CV_8UC1 || type==CV_8UC3 );


    //======计算gamma值========//
    auto mean = cv::mean(src);//求均值
    mean[0] = std::log10(0.5) / std::log10(mean[0]/255);//gamma = -0.3/log10(X)
    if( 3==channels )
    {
        mean[1] = std::log10(0.5) / std::log10(mean[1]/255);//gamma = -0.3/log10(X)
        mean[2] = std::log10(0.5) / std::log10(mean[2]/255);//gamma = -0.3/log10(X)

        //多通道图像,对求得的gamm再次平均,避免偏色现象
        auto mean3 = (mean[0]+mean[1]+mean[2])/3;
        mean[0]=mean[1]=mean[2] = mean3;
    }



    //=======计算gamma查找表,减少计算量=======//
    //查找表,数组的下标对应图片里面的灰度值
    //lut(0,10)=(50,60,70)表示通道1灰度值为10的像素其对应的值为50;
    // 通道2灰度值为10的像素其对应的值为60;
    // 通道3灰度值为10的像素其对应的值为70
    cv::Mat lut(1,256,src.type());
    if( 1==channels )
    {
        for(int i=0; i<256;++i)//灰度等级[0,255]
        {
            //将灰度值归一化0-1之间
            float Y = i*1.0f/255;// or Y=i*0.00392;
            //求该灰度值gamma校正后的值
            Y = std::pow(Y,mean[0]);

            lut.at<unsigned char>(0,i) = cv::saturate_cast<unsigned char>(Y*255);
        }
    }
    else if(3==channels)
    {
        for(int i=0; i<256;++i)//灰度等级[0,255]
        {
            //将灰度值归一化0-1之间
            float Y = i*1.0f/255;// or Y=i*0.00392;
            //求该灰度值gamma校正后的值
            auto B = cv::saturate_cast<unsigned char>(std::pow(Y,mean[0])*255);
            auto G = cv::saturate_cast<unsigned char>(std::pow(Y,mean[1])*255);
            auto R = cv::saturate_cast<unsigned char>(std::pow(Y,mean[2])*255);

            lut.at<cv::Vec3b>(0,i) = cv::Vec3b(B,G,R);
        }
    }


    //=========利用查找表进行校正==========//
    cv::LUT(src,lut,dst);
}

int main()
{
    std::string image_path = "../autogamma.png";
    cv::Mat src = cv::imread(image_path,cv::IMREAD_COLOR);
    cv::imshow("src",src);

    cv::Mat dst1,dst2;
    AutoGammaCorrection(src,dst1);
    src.convertTo(src,CV_32FC3,1.0/255);
    cv::pow(src,0.7,dst2);
    cv::normalize(dst2,dst2,0,255,cv::NORM_MINMAX);
    cv::convertScaleAbs(dst2,dst2);

    cv::imshow("dst1",dst1);
    cv::imshow("dst2",dst2);
    cv::waitKey(0);
}

效果如下:

类别图像直方图
原图原图原直方图
自动gamma校正自动gamma校正自动gamma校正直方图
手动gamma校正手动gamm校正手动校正gamma直方图

可以看到,
1.自动gamma校正通过自动计算gamma值来调整图像,比手工设定gamma值要明显方便很多。
2.经过自动gamma校正后的图像,其直方图的中心相对原图向中心进行了平移。

参考资料

1.自动伽马校正原英文论文 Automatic gamma correction based on average of
brightness



下面的是我的公众号二维码图片,按需关注。
图注:幼儿园的学霸

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值