判定一棵二叉树是否是二叉搜索树

问题

给定一棵二叉树,判定该二叉树是否是二叉搜索树(Binary Search Tree)?

解法1:暴力搜索

首先说明一下二叉树和二叉搜索树的区别。二叉树指这样的树结构,它的每个结点的孩子数目最多为2个;二叉搜索树是一种二叉树,但是它有附加的一些约束条件,这些约束条件必须对每个结点都成立:
  • 结点node的左子树所有结点的值都小于node的值。
  • 结点node的右子树所有结点的值都大于node的值。
  • 结点node的左右子树同样都必须是二叉搜索树。
该问题在面试中也许经常问到,考察的是对二叉搜索树定义的理解。初看这个问题,也许会想这样来实现:

假定当前结点值为k。对于二叉树中每个结点,判断其左孩子的值是否小于k,其右孩子的值是否大于k。如果所有结点都满足该条件,则该二叉树是一棵二叉搜索树。
很不幸的是,这个算法是错误的。考虑下面的二叉树,它符合上面算法的条件,但是它不是一棵二叉搜索树。
    10
   /  \
  5   15     -------- binary tree (1)
     /  \
    6    20
那么,根据二叉搜索树的定义,可以想到一种暴力搜索的方法来判定二叉树是否为二叉搜索树。
 假定当前结点值为k。则对于二叉树中每个结点,其左子树所有结点的值必须都小于k,其右子树所有结点的值都必须大于k。
暴力搜索算法代码如下,虽然效率不高,但是它确实能够完成工作。该解法最坏情况复杂度为O(n^2),n为结点数目。(当所有结点都在一边的时候出现最坏情况)
  1. /*判断左子树的结点值是否都小于val*/  
  2. bool isSubTreeLessThan(BinaryTree *p, int val)   
  3. {  
  4.   if (!p) return true;  
  5.   return (p->data < val &&  
  6.           isSubTreeLessThan(p->left, val) &&  
  7.           isSubTreeLessThan(p->right, val));  
  8. }  
  9.  /*判断右子树的结点值是否都大于val*/  
  10. bool isSubTreeGreaterThan(BinaryTree *p, int val)   
  11. {  
  12.   if (!p) return true;  
  13.   return (p->data > val &&  
  14.           isSubTreeGreaterThan(p->left, val) &&  
  15.           isSubTreeGreaterThan(p->right, val));  
  16. }  
  17.  /*判定二叉树是否是二叉搜索树*/  
  18. bool isBSTBruteForce(BinaryTree *p)   
  19. {  
  20.   if (!p) return true;  
  21.   return isSubTreeLessThan(p->left, p->data) &&  
  22.          isSubTreeGreaterThan(p->right, p->data) &&  
  23.          isBSTBruteForce(p->left) &&  
  24.          isBSTBruteForce(p->right);  
  25. }  

一个类似的解法是:对于结点node,判断其左子树最大值是否大于node的值,如果是,则该二叉树不是二叉搜索树。如果不是,则接着判断右子树最小值是否小于或等于node的值,如果是,则不是二叉搜索树。如果不是则接着递归判断左右子树是否是二叉搜索树。(代码中的maxValue和minValue函数功能分别是返回二叉树中的最大值和最小值,这里假定二叉树为二叉搜索树,实际返回的不一定是最大值和最小值)
  1. int isBST(struct node* node)   
  2. {   
  3.   if (node==NULL) return(true);  
  4.   //如果左子树最大值>=当前node的值,则返回false  
  5.   if (node->left!=NULL && maxValue(node->left) >= node->data)   
  6.     return(false);  
  7.   // 如果右子树最小值<=当前node的值,返回false  
  8.   if (node->right!=NULL && minValue(node->right) <= node->data)   
  9.     return(false);  
  10.   // 如果左子树或者右子树不是BST,返回false  
  11.   if (!isBST(node->left) || !isBST(node->right))   
  12.     return(false);  
  13.   // 通过所有测试,返回true  
  14.   return(true);   
  15. }   

解法2:更好的解法

以前面提到的binary tree(1)为例,当我们从结点10遍历到右结点15时,我们知道右子树结点值肯定都在 10和+INFINITY(无穷大)之间 当我们遍历到结点15的左孩子结点6时,我们知道结点15的左子树结点值都必须在10到15之间。显然,结点6不符合条件,因此它不是一棵二叉搜索树。该算法代码如下:
  1. int isBST2(struct node* node)   
  2. {  
  3.       return(isBSTUtil(node, INT_MIN, INT_MAX));  
  4. }  
  5. /* 
  6. 给定的二叉树是BST则返回true,且它的值  >min 以及 < max. 
  7. */  
  8. int isBSTUtil(struct node* node, int min, int max)   
  9. {  
  10.       if (node==NULL) return(true);  
  11.       // 如果不满足min和max约束,返回false  
  12.       if (node->data<=min || node->data>=max) return(false);  
  13.       // 递归判断左右子树是否满足min和max约束条件  
  14.       return  
  15.           isBSTUtil(node->left, min, node->data) &&  
  16.           isBSTUtil(node->right, node->data, max)  
  17.       );  
  18. }  
由于该算法只需要访问每个结点1次,因此时间复杂度为O(n),比解法1效率高很多。

解法3:中序遍历算法

因为一棵二叉搜索树的中序遍历后其结点值是从小到大排好序的,所以依此给出下面的解法。该解法时间复杂度也是O(n)。
  1. bool isBSTInOrder(BinaryTree *root)   
  2. {  
  3.   int prev = INT_MIN;  
  4.   return isBSTInOrderHelper(root, prev);  
  5. }  
  6. /*该函数判断二叉树p是否是一棵二叉搜索树,且其结点值都大于prev*/  
  7. bool isBSTInOrderHelper(BinaryTree *p, int& prev)   
  8. {  
  9.   if (!p) return true;  
  10.   if (isBSTInOrderHelper(p->left, prev)) { // 如果左子树是二叉搜索树,且结点值都大于prev  
  11.     if (p->data > prev) { //判断当前结点值是否大于prev,因为此时prev已经设置为已经中序遍历过的结点的最大值。  
  12.       prev = p->data;  
  13.       return isBSTInOrderHelper(p->right, prev); //若结点值大于prev,则设置prev为当前结点值,并判断右子树是否二叉搜索树且结点值都大于prev。  
  14.     } else {  
  15.       return false;  
  16.     }  
  17.   }  
  18.   else {  
  19.     return false;  
  20.   }  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值