电商专题之 Shopee v.s. Lazada





1 东南亚市场分析

东南亚整体的发展情况经常被拿来与十多年前的CN相比。丰富的人口资源、崛起的中产阶级、有着巨大空间的电商渗透率、相对分散的市场格局,这些都预示着东南亚电商是一片蓝海

1.1 人口

  • 数量
    2019年,东南亚六国拥有5.7亿的人口,所需求的市场也是非常大的

在这里插入图片描述

  • 渗透率
    most engaged mobile internet region in the world
    2019年,SEA地区上网人数为3.6亿(同比2016年是2.6亿)
    世界上手机上网时长top10国家里面,东南亚占了四个国家

1.2 经济

GDP growth:自从2010年以来,SEA地区的GDP growth(增速)比 global economy高1-2%

电商GMV as% of GDP:2015是1.3%,2019是3.7%,对标美国6.5%

电商GMV:2015年320亿美元,2019年SEA地区电商GMV 1000亿美元,预计2025到3000亿美元

其中,印尼增长最快,规模也最大,CAGR达49%

1.3 电商发展的drivers

购物节、APP内活动、卖家发展、物流的发展



2 Shopee

成立于2015年,总部新加坡

2.1 现状

  • GMV:2018年 90亿美元 (YoY +120%)
  • 收入结构:时尚 33%,健康美妆 15%,母婴 12%
  • 印尼和台湾是主阵地,贡献了Shopee 50%左右的GMV

2.2 战略/策略

  • 选品
    高SKU,平价(更利于获得用户信任感,因为便宜的东西即使上当也无所谓)

  • C端 - 对用户
    1)内容社区功能
    强,有直播live、有社区,评论区是展开的
    2)价格:同一单品价格更cheaper,且无运费
    3)渠道

    • APP先行 (SEA地区是mobile oriented)
    • 有本土化策略,不同东南亚国家有不同的APP

    4)用户画像
    80% 女性

  • B端 - 对商家

    • 前三个月零佣金,三个月以后才会收取销售佣金,最高6%;没有注册费用和押金
    • 19年Shopee也成了最受欢迎的跨境平台之一,入驻的卖家超过30万
    • 国内转运仓:shopee国内设置有四个转运仓,方便国内店家的快递运输
    • 铺货:shopee平台支持店家铺货,这是很多的电商平台都不容忍的
    • 无货源模式:你不需要拥有自己的产品,在1688或是其他平台找好你想上架的产品,和厂家联系,店铺接收订单,厂家发货到转运仓,转运仓进行打包,贴单等工作,然后发给买家

2.3 物流

然后卖家也不需要发跨境快递,平台自建了SLS物流体系,操作流程是卖家需要将货物贴上国际面单然后快递到国内指定的中转仓,最后由官方统一进行发送到国外买家手中,非常的省时省力。

2.4 UI

在这里插入图片描述



3 Lazada

2012年成立
阿里从2016到目前,持股83%,连续投资40亿

3.1 策略

  • 选品:更高客单价,垂直类,更多3C、电子设备用品,而不是时尚美妆 v.s. shopee

  • C端 对用户
    1)内容社区功能:弱
    2)价格:同一单品价格更贵,且有运费
    3)渠道:

    • 网页先行 (但是SEA地区是mobile oriented)
    • 没有本土化策略,六个东南亚国家用同一个APP

    3)用户画像
    50% 女性

  • B端 对商家

    • 4% 佣金

3.2 坏的方面:暂时的流量失利

效果不好:根据阿里巴巴2019年财报,包括Lazada和速卖通在内的海外零售业务对集团收入的贡献只有5%

挑战:东南亚各国国情不同,从地理、人口、经济基础到宗教、文化差异巨大,无法照搬一套成熟的中国模板。这点恐怕才是阿里巴巴现阶段在Lazada遇到的最大挑战。

  • 三年连换三帅的现象,多少折射出阿里巴巴在东南亚的水土不服。本土化不顺利带来的直接后果,就是被竞争对手反超。东南亚市场的复杂性让这里挤满了大大小小的竞争者。其中最具威胁性的恰恰是来自腾讯投资的Shopee(虾皮)

  • 难点是支付。东南亚国家信用卡渗透率整体偏低,部分用户甚至没有银行账户。尽管Lazada背靠蚂蚁金服推出了电子钱包,但电商带动数字支付的中国经验似乎无法直接复制。Lazada干脆依靠物流网络,创造了“货到付款”(COD)这一现金支付模式,然而随之而来的还有居高不下的退货率。

  • Lazada正在做垂直化精细化转型,类似于早期的天猫,而Shopee更像是早期的C2C淘宝。但在一个多数国家人均GDP未超过中国的新兴市场上,消费升级看上去为时尚早,便宜好卖的产品和低门槛招商似乎更接地气。

3.3 好的方面:深耕生态

从阿里Lazada以来,对东南亚电商生态一直在做深耕布局。

1)物流方面
Lazada自创立伊始便自建物流,阿里收购后,得到菜鸟的“加持”。

目前Lazada在东南亚6国17城,至少布置了30个仓库,并搭建了in-house,最后一英里配送中心。目前,Lazada80%订单由仓配体系实现交付,in-house网络覆盖率高达70%。如今,Lazada的快递可以送到东南亚6国的几乎任何一个海岛、渔村。

在皮尔·彭龙卸任之后,彭蕾曾表示,皮尔最大的功绩,就在于完善了Lazada的物流配送体系。

2)支付方面
Lazada依托蚂蚁金服的技术,打造Lazada电子钱包。2018年,马来西亚双12活动中有一半的消费者选择用Lazada电子钱包支付。

同时,配合当地的消费习惯,Lazada还在东南亚建立了最大的货到付款服务网络。

3)战略路线
Lazada在东南亚走高端品牌形象,而Shopee则走C店路线,突出产品价格优势。据相关资料显示,目前shopee的店铺数有23万,Lazada的店铺数为14万,Shopee的卖家数量是Lazada的1.5倍。

依托阿里巴巴数字技术,Lazada通过“Voyager”项目对平台进行重构,拥有了世界级的电商平台水平,并可以举办规模庞大的大型促销活动能力。

3.4 UI

在这里插入图片描述



4 Shopee v.s. Lazada

4.1 结果:Lazada流量被Shopee反超

Lazada在东南亚常年占据电商龙头的位置,一直到2018年第四季度,其各方面数据都是稳居首位。然而,2019年这个情况发生了变化。

  • 移动端
    近日一份《2019东南亚电商年终报告》(简称报告)发布,据报告显示,Shopee移动端2019年下载量、MAU及用户留存率反超Lazada,夺得了三项冠军。

  • 网页端

    与此同时,其网页端访问量也超过20亿次,坐稳2019年第一把交椅,而Lazada的数字则为18.4亿次左右。

在这里插入图片描述

用户留存率排名。
在这里插入图片描述

4.2 原因分析

1.战略
1)选品
Shopee SKU丰富,target fashion类客单价较低商品;而Lazada垂直运营,不太适合初期这样做

2)运营
Shopee在本地化上直击Lazada痛点,就是其直追Lazada的根本原因。东南亚六国,在宗教人文等领域上存在着巨大差异,同一个产品,在六国中的热搜关键词甚至都不一样。为应对各国不同情况,Shopee在东南亚六国外加中国台湾地区,总共推出七个独立的APP,但是Lazada在东南亚却只有一个APP,无法有效应对各国不同的情况。Shopee本土化运营做的好,每个国家都不一样的APP。Lazada凭借一个APP打天下不太适用

2.管理层
Lazada高层频频更换,三年换三帅

3.内容
Shopee签约足球巨星C罗,代言Shopee,并赶上了“9.9超级购物节”。借“9.9超级购物节”开启直播,争夺大流量。Shopee的live和社区社交氛围做得比Lazada好



5 结论

5.1 大橘🍊未定

单从流量上来说,Shopee短时间内确实反超了Lazada,但是从长远发展角度来看,Lazada未必会落后于Shopee,因为在深耕电商生态上,Shopee还有一段路要走。

5.2 SEA地区发展空间很大

无论是Shopee还是Lazada,都处在生命周期的早期,未来还有很长的路要走
在这里插入图片描述



资料引用

1.Marketplace Businesses + Shopee (Sea Ltd), Hayden Capital, Oct 2018
2.E-commerce SEA 2019, Google, Temasek and Bain, 2020

相关推荐
<p> 需要学习Windows系统YOLOv4的同学请前往《Windows版YOLOv4目标检测实战:原理与源码解析》, </p> <p> 课程链接 https://edu.csdn.net/course/detail/29865 </p> <h3> <span style="color:#3598db;">【为什么要学习这门课】</span> </h3> <p> <span>Linux</span>创始人<span>Linus Torvalds</span>有一句名言:<span>Talk is cheap. Show me the code. </span><strong><span style="color:#ba372a;">冗谈不够,放码过来!</span></strong> </p> <p> <span> </span>代码阅读是从基础到提高的必由之路。尤其对深度学习,许多框架隐藏了神经网络底层的实现,只能在上层调包使用,对其内部原理很难认识清晰,不利于进一步优化和创新。 </p> <p> YOLOv4是最近推出的基于深度学习的端到端实时目标检测方法。 </p> <p> YOLOv4的实现darknet是使用C语言开发的轻型开源深度学习框架,依赖少,可移植性好,可以作为很好的代码阅读案例,让我们深入探究其实现原理。 </p> <h3> <span style="color:#3598db;">【课程内容与收获】</span> </h3> <p> 本课程将解析YOLOv4的实现原理和源码,具体内容包括: </p> <p> - YOLOv4目标检测原理<br /> - 神经网络及darknet的C语言实现,尤其是反向传播的梯度求解和误差计算<br /> - 代码阅读工具及方法<br /> - 深度学习计算的利器:BLAS和GEMM<br /> - GPU的CUDA编程方法及在darknet的应用<br /> - YOLOv4的程序流程 </p> <p> - YOLOv4各层及关键技术的源码解析 </p> <p> 本课程将提供注释后的darknet的源码程序文件。 </p> <h3> <strong><span style="color:#3598db;">【相关课程】</span></strong> </h3> <p> 除本课程《YOLOv4目标检测:原理与源码解析》外,本人推出了有关YOLOv4目标检测的系列课程,包括: </p> <p> 《YOLOv4目标检测实战:训练自己的数据集》 </p> <p> 《YOLOv4-tiny目标检测实战:训练自己的数据集》 </p> <p> 《YOLOv4目标检测实战:人脸口罩佩戴检测》<br /> 《YOLOv4目标检测实战:中国交通标志识别》 </p> <p> 建议先学习一门YOLOv4实战课程,对YOLOv4的使用方法了解以后再学习本课程。 </p> <h3> <span style="color:#3598db;">【YOLOv4网络模型架构图】</span> </h3> <p> 下图由白勇老师绘制 </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202006291526195469.jpg" /> </p> <p>   </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202007011518185782.jpg" /> </p>
©️2020 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页