KL散度、JS散度、Wasserstein距离

1. KL散度

KL散度又称为相对熵,信息散度,信息增益。KL散度是是两个概率分布P和Q 差别的非对称性的度量。 KL散度是用来 度量使用基于Q的编码来编码来自P的样本平均所需的额外的位元数。 典型情况下,P表示数据的真实分布,Q表示数据的理论分布,模型分布,或P的近似分布。

定义如下:

DKL(P//Q)=xXP(x)log1P(x)+xXP(x)log1Q(x)

因为对数函数是凸函数,所以KL散度的值为非负数。

有时会将KL散度称为KL距离,但它并不满足距离的性质:

1. KL散度不是对称的:KL(A,B) KL(B,A)

2. KL散度不满足三角不等式: KL(A,B) > KL(A,C)+KL(C,B)

2. JS散度(Jensen-Shannon)

JS散度度量了两个概率分布的相似度,基于KL散度的变体,解决了KL散度非对称的问题。一般地,JS散度是对称的,其取值是0到1之间。定义如下:

这里写图片描述

KL散度和JS散度度量的时候有一个问题:

如果两个分配P,Q离得很远,完全没有重叠的时候,那么KL散度值是没有意义的,而JS散度值是一个常数。这在学习算法中是比较致命的,这就意味这这一点的梯度为0。梯度消失了。

3. Wasserstein距离

Wasserstein距离度量两个概率分布之间的距离,定义如下:
这里写图片描述
Π(P1,P2)P1P2分布组合起来的所有可能的联合分布的集合。对于每一个可能的联合分布γ,可以从中采样(x,y)γ得到一个样本x和y,并计算出这对样本的距离||x−y||,所以可以计算该联合分布γ下,样本对距离的期望值E(x,y)γ[||xy||]。在所有可能的联合分布中能够对这个期望值取到的下界infγΠ(P1,P2)E(x,y)γ[||xy||]就是Wasserstein距离。

直观上可以把E(x,y)γ[||xy||]理解为在γ这个路径规划下把土堆P1挪到土堆P2所需要的消耗。而Wasserstein距离就是在最优路径规划下的最小消耗。所以Wesserstein距离又叫Earth-Mover距离。

Wessertein距离相比KL散度和JS散度的优势在于:

即使两个分布的支撑集没有重叠或者重叠非常少,仍然能反映两个分布的远近。而JS散度在此情况下是常量,KL散度可能无意义。

转载自:
KL散度、JS散度、Wasserstein距离

展开阅读全文

没有更多推荐了,返回首页