# 坐标变换(2)—不同坐标系下的变换

## 1. 位置、姿态与坐标系

### 1.1 位置

$^{A} P=\left[\begin{array}{l} {p_{x}} \\ {p_{y}} \\ {p_{z}} \end{array}\right]$

### 1.2 姿态

$_{B}^{A} R=\begin{bmatrix} ^{A}X_{B}& ^{A}Y_{B} & ^{A}Z_{B} \end{bmatrix}=\left[\begin{array}{ccc} {r_{11}} & {r_{12}} & {r_{13}} \\ {r_{21}} & {r_{22}} & {r_{23}} \\ {r_{31}} & {r_{32}} & {r_{33}} \end{array}\right]$

$_{B}^{A} R=\begin{bmatrix} ^{A}X_{B}& ^{A}Y_{B} & ^{A}Z_{B} \end{bmatrix}=\left[\begin{array}{ccc} { {\boldsymbol{X}}_{\boldsymbol{B}} \cdot {\boldsymbol{X}}_{\boldsymbol{A}}} & { {\boldsymbol{Y}}_{\boldsymbol{B}} \cdot {\boldsymbol{X}}_{\boldsymbol{A}}} & { {\boldsymbol{Z}}_{\boldsymbol{B}} \cdot {\boldsymbol{X}}_{\boldsymbol{A}}} \\ { {\boldsymbol{X}}_{\boldsymbol{B}} \cdot {\boldsymbol{Y}}_{A}} & { {\boldsymbol{Y}}_{\boldsymbol{B}} \cdot {\boldsymbol{Y}}_{A}} & { {\boldsymbol{Z}}_{\boldsymbol{B}} \cdot {\boldsymbol{Y}}_{\boldsymbol{A}}} \\ { {\boldsymbol{X}}_{\boldsymbol{B}} \cdot {\boldsymbol{Z}}_{\boldsymbol{A}}} & { {Y}_{\boldsymbol{B}} \cdot {Z}_{A}} & { {\boldsymbol{Z}}_{\boldsymbol{B}} \cdot {\boldsymbol{Z}}_{\boldsymbol{A}}} \end{array}\right]$

$_{B}^{A} R=\begin{bmatrix} ^{A}X_{B}& ^{A}Y_{B} & ^{A}Z_{B} \end{bmatrix}=\left[\begin{array}{c} {^{B}{X}_A^{T}} \\ {^{B}{Y}_{A}^{T}} \\ {^{B}{Z}_{A}^{T}} \end{array}\right]$

$_{B}^{A}R={_{A}^{B}R}^{T}$

$\left[\begin{array}{c} {^{A}{X}_B^{T}} \\ {^{A}{Y}_{B}^{T}} \\ {^{A}{Z}_{B}^{T}} \end{array}\right]\begin{bmatrix} ^{A}X_{B}& ^{A}Y_{B} & ^{A}Z_{B} \end{bmatrix}= {_{B}^{A}R}^{T} {_{B}^{A} R}=I_{3}$

## 2. 坐标变换

### 2.1 平移变换

$^{A}P={^{B}P}+{^{A}P_{BORG}}$

### 2.2 旋转变换

\begin{aligned} ^{A} p_{x}={^{B}{X}_{A}} \cdot{^{B} P}\\ ^{A} p_{y}={^{B}{Y}_{A}} \cdot{^{B} P}\\ ^{A} p_{z}={^{B}{Z}_{A}} \cdot{^{B} P} \end{aligned}

$^{A}P={_{B}^{A} R} {^{B}P}$

### 2.3 旋转平移

$^{A}P={_{B}^{A} R} {^{B}P}+{^{A}P_{BORG}}$

$\left[\begin{array}{c} {^{A}{P}} \\ {1} \end{array}\right]=\left[\begin{array}{c|c} {_{B}^{A} R} & {P_{B O R G}} \\ \hline 0 & {1} \end{array}\right]\left[\begin{array}{c} {^{B}{P}} \\ {1} \end{array}\right]$

$^{A}P={_{B}^{A} T} {^{B}P}$

©️2019 CSDN 皮肤主题: 创作都市 设计师: CSDN官方博客