经典损失函数——均方误差(MSE)

Tensorflow 专栏收录该内容
8 篇文章 0 订阅

与分类问题不同,回归问题解决的是对具体数值的预测,eg:房价预测,销量预测,流量预测等

均方误差的定义:均方误差

#y代表输出答案,y_代表标准答案
mse=tf.reduce_mean(tf.square(y_-y))

但在实际问题中往往均方误差并不能很好的表达问题,比如预测销量,卖衣服,货物成本一件100元,商品利润一件20。那此时多预测一个亏100,少预测一个少挣20。所以这里面有一个权重在里面,根据具体问题去定义偏向多进货还是偏向少进货。这时候往往需要根据实际问题在MSE的基础上自定义损失函数。

  • 1
    点赞
  • 0
    评论
  • 6
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值