又称单词查找树,Trie树,是一种树形结构,是一种哈希树的变种。典型应用是用于统计,排序和保存大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计。它的优点是:利用字符串的公共前缀来节约存储空间,最大限度地减少无谓的字符串比较,查询效率比哈希表高。
字典树与字典很相似,当你要查一个单词是不是在字典树中,首先看单词的第一个字母是不是在字典的第一层,如果不在,说明字典树里没有该单词,如果在就在该字母的孩子节点里找是不是有单词的第二个字母,没有说明没有该单词,有的话用同样的方法继续查找.字典树不仅可以用来储存字母,也可以储存数字等其它数据。
Trie的数据结构定义:
typedef struct Trie
{
Trie * next[MAX];
int v; // 根据需要变化
};
Trie * root;
next是表示每层有多少种类的数,如果只是小写字母,则26即可,若改为大小写字母,则是52,若再加上数字,则是62了,这里根据题意来确定。
v可以表示一个字典树到此有多少相同前缀的数目,这里根据需要应当学会自由变化。
Trie的查找(最主要的操作):
(1) 每次从根结点开始一次搜索;
(2) 取得要查找关键词的第一个字母,并根据该字母选择对应的子树并转到该子树继续进行检索; (3) 在相应的子树上,取得要查找关键词的第二个字母,并进一步选择对应的子树进行检索。
(4) 迭代过程……
(5) 在某个结点处,关键词的所有字母已被取出,则读取附在该结点上的信息,即完成查找。
这里给出生成字典树和查找的模版:
生成字典树:
{
int len = strlen(str);
Trie * p = root, * q;
for ( int i = 0 ; i < len; ++ i)
{
int id = str[i] - ' 0 ' ;
if (p -> next[id] == NULL)
{
q = (Trie * )malloc( sizeof (Trie));
q -> v = 1 ; // 初始v==1
for ( int j = 0 ; j < MAX; ++ j)
q -> next[j] = NULL;
p -> next[id] = q;
p = p -> next[id];
}
else
{
p -> next[id] -> v ++ ;
p = p -> next[id];
}
}
p -> v = - 1 ; // 若为结尾,则将v改成-1表示
}
接下来是查找的过程了:
{
int len = strlen(str);
Trie * p = root;
for ( int i = 0 ; i < len; ++ i)
{
int id = str[i] - ' 0 ' ;
p = p -> next[id];
if (p == NULL) // 若为空集,表示不存以此为前缀的串
return 0 ;
if (p -> v == - 1 ) // 字符集中已有串是此串的前缀
return - 1 ;
}
return - 1 ; // 此串是字符集中某串的前缀
}
对于上述动态字典树,有时会超内存,比如 HDOJ 1671 Phone List,这是就要记得释放空间了:
{
int i;
if (T == NULL)
return 0 ;
for (i = 0 ;i < MAX;i ++ )
{
if (T -> next[i] != NULL)
deal(T -> next[i]);
}
free(T);
return 0 ;
}