ZhangPY的专栏

不骄不躁,不屈不挠;严于律己,宽以待人

C++标准模板库Stand Template Library(STL)简介与STL string类

参考《21天学通C++》第15和16章节,在对宏和模板学习之后,开启对C++实现的标准模板类STL进行简介,同时介绍简单的string类。虽然前面对于vector、deque、list等进行过学习和总结,但并没有一个宏观上的把握,现在通过上一篇和这一篇博文,将对C++模板以及基于C++模板的STL...

2015-07-31 15:21:31

阅读数:1081

评论数:0

C++ 宏和模板简介

参考《21天学通C++》第14章节,对C++中的宏和模板进行了学习,总结起来其主要内容如下: (1) 预处理器简介 (2) 关键字#define与宏 (3) 模板简介 (4) 如何编写函数模板和模板类 (5) 宏和模板之间的区别 (6) 使用static_assert进行编译阶段检查 ******...

2015-07-30 11:44:55

阅读数:1757

评论数:0

数据结构(三):非线性逻辑结构-树

经过数据结构(二)系列文章,已经把线性结构中最常用的数据结构进行了介绍,包括顺序存储结构中顺序表、顺序队列和顺序栈,链式存储结构中的链表、链栈和链队列。线性结构是数据结构中最为常见也最简单的逻辑结构。下面将进入非线性逻辑的数据结构部分,还记得下面的一副数据结构的分类图吧,对于非线性逻辑,主要介绍树...

2015-07-29 13:12:29

阅读数:1268

评论数:0

数据结构(二):线性表的使用原则以及链表的应用-稀疏矩阵的三元组表示

上一篇博文中主要总结线性表中的链式存储结构实现,比如单向链表、循环链表,还通过对比链表和顺序表的多项式的存储表示,说明链表的优点。可以参看上篇博文http://blog.csdn.net/lg1259156776/article/details/47018813 下面先对没有介绍的链表中的双链表...

2015-07-27 00:23:40

阅读数:2279

评论数:0

图像相似度测量与模板匹配总结

摘要 本文主要总结了进行目标跟踪、检测中经常使用到的图像相似度测量和模板匹配方法,并给出了具体的基于OpenCV的代码实现。 引言 模板匹配是一种在源图像中寻找与图像patch最相似的技术,常常用来进行目标的识别、跟踪与检测。其中最相似肯定是基于某种相似度准则来讲的,也就是需要进行相似度的测量。另...

2015-07-24 12:21:16

阅读数:24841

评论数:2

C/C++文件操作经验总结

最近在做一个从groundtruth_rect.txt中读取按行存储的矩形元素(x, y, w, h),文本存储的格式如下: 310,102,39,50 308,100,39,50 306,99,39,50 306,98,38,49 304,97,38,49 303,96,37,48 一般处...

2015-07-24 10:36:18

阅读数:1790

评论数:0

C++的标准模板库STL中实现的数据结构之链表std::list的分析与使用

摘要 本文主要借助对C++的标准模板库STL中实现的数据结构的学习和使用来加深对数据结构的理解,即联系数据结构的理论分析和具体的应用实现(STL),本文是系列总结的第二篇,主要针对线性表中的链表 STL std::list进行分析和总结。 引言 由于前段时间对台大的机器学习基石和技法课程进行了学...

2015-07-23 15:36:08

阅读数:7213

评论数:0

数据结构(二):链表、链队列

上一篇博文中主要总结线性表的顺序存储结构实现,比如顺序表、顺序队列和顺序栈。具体可以参考上篇博文 http://blog.csdn.net/lg1259156776/article/details/46993591 下面要进行学习和总结的是线性表的链式存储结构实现,比如链表和链队列。 顺序存储结构...

2015-07-23 11:32:18

阅读数:1546

评论数:0

C++类型转换运算符 static_cast,dynamic_cast,reinterpret_cast,const_cast

类型转换是一种让程序员能够暂时或永久性改变编译器对对象的解释机制。可改变对象解释方式的运算符称为类型转换运算符。 为何需要进行类型转换 通常为了实现使用不同环境的个人和厂商编写的模块能够相互调用和协作,程序员需要让编译器按照所需的方式解释数据,并成功编译和执行。一个非常经典的例子是:目前很多C++...

2015-07-22 15:55:45

阅读数:1188

评论数:0

C++的标准模板库STL中实现的数据结构之顺序表vector的分析与使用

一、摘要 本文主要借助对C++的标准模板库STL中实现的数据结构的学习和使用来加深对数据结构的理解,即联系数据结构的理论分析和具体的应用实现(STL),本文是系列总结的第一篇,主要针对线性表中的顺序表(动态数组)STL vector进行分析和总结。 二、引言 由于前段时间对台大的机器学习基石和...

2015-07-22 12:36:53

阅读数:1992

评论数:0

数据结构(二):线性表包括顺序存储结构(顺序表、顺序队列和顺序栈)和链式存储结构(链表、链队列和链栈)

还记得数据结构这个经典的分类图吧: pic1 今天主要关注一下线性表。 什么是线性表 线性表的划分是从数据的逻辑结构上进行的。线性指的是在数据的逻辑结构上是线性的。即在数据元素的非空有限集中 (1) 存在唯一的一个被称作“第一个”的数据元素,(2) 存在唯一的一个被称作“最后一个”的数据元素,(...

2015-07-21 22:46:50

阅读数:3210

评论数:0

如何模拟高斯分布的随机数发生器?

在一些算法中,经常会用到随机数,最常用的随机数有两种,一是服从均匀分布的随机数,二是服从高斯分布(正态分布)的随机数。在标准C中并没有产生高斯分布的随机数发生器,只有服从均匀分布的随机数发生器rand(),那么如何通过rand()来模拟出高斯分布特征的伪随机数呢?这就是本文的话题。 实验原理:...

2015-07-21 09:55:23

阅读数:6721

评论数:1

数据结构(一):数据结构的基本概念和算法的时间和空间复杂度

数据结构讨论的范畴 计算机技术的两大支柱:1是数据结构,2是算法。在某种程度上讲,程序设计等同于数据结构+算法。 程序设计是为计算机设计一组指令集,算法是解决问题的策略,数据结构是模型。 问题包括:数值计算,解方程, 非数值计算的问题:计算机对弈,棋盘,棋子如何表示(模型),规...

2015-07-20 22:38:32

阅读数:11635

评论数:0

Adaptive Compressive Tracking via Online Vector Boosting Feature Selection(ACT算法解读)

从2012年张凯华在CVPR上的一篇Compressive Tracking (CT,压缩跟踪)论文开始,CT算法就引起了广泛关注。其主要的特色就是采用了压缩感知的原理,通过稀疏随机投影矩阵将高维度的Harr-like特征压缩到低维度(2-3的稀疏度),然后通过朴素贝叶斯分类器进行分类。最吸引人的...

2015-07-17 11:13:05

阅读数:1724

评论数:0

Traking-Learning-Detection TLD经典论文部分翻译

摘要 本文研究视频流中未知目标的长期跟踪问题。在第一帧,通过选定位置和大小定义跟踪目标。在接下来的每一帧中,跟踪任务是确定目标的位置和大小或者说明目标不存在。我们提出了一种新颖的跟踪框架(TLD),明确地将长期跟踪任务分解为跟踪、学习和检测。跟踪器完成目标在图像帧间地跟踪。检测器集中到当前为止所...

2015-07-17 09:23:55

阅读数:10896

评论数:0

机器学习之径向基神经网络(RBF NN)

本文基于台大机器学习技法系列课程进行的笔记总结。 主要内容如下图所示: 首先介绍一下径向基函数网络的Hypothesis和网络的结构,然后介绍径向基神经网络学习算法,以及利用K-means进行的学习,最后通过一个实例加深对RBF神经网络认识和理解。 RBF神经网络的Hypothesis和网络结...

2015-07-17 00:47:05

阅读数:21624

评论数:0

K-means算法

K-means算法 输入input:data X 输出output:data(X,S) 解释:输入没有标签的数据data X,经过训练,给每一个数据添上一个标签S{s1,s2,...,sk},对应的聚类中心为U{u1,u2,...,uk}。 效果:将输入数据分为k类,并得到其相应类别的中心点。 =...

2015-07-16 19:23:04

阅读数:1748

评论数:0

机器学习之深度学习

本文基于台大机器学习技法系列课程进行的笔记总结。 一、主要内容 topic 1  深度神经网络结构 从类神经网络结构中我们已经发现了神经网络中的每一层实际上都是对前一层进行的特征转换,也就是特征抽取。一般的隐藏层(hidden layer)较少的类神经网络结构我们称之为shallow,而当隐藏...

2015-07-16 11:39:50

阅读数:1473

评论数:0

Tracking-Learning-Detection (TLD算法总结)

一、TLD算法简介 TLD(Tracking-Learning-Detection)是英国萨里大学的一个捷克籍博士生ZdenekKalal在2012年7月提出的一种新的单目标长时间跟踪算法。该算法与传统跟踪算法的显著区别在于将传统的跟踪算法和传统的检测算法相结合来解决被跟踪目标在被跟踪过程中发生...

2015-07-15 20:22:54

阅读数:3443

评论数:0

机器学习技法之Aggregation方法总结:Blending、Learning(Bagging、AdaBoost、Decision Tree)及其aggregation of aggregation

本文主要基于台大林轩田老师的机器学习技法课程中关于使用融合(aggregation)方法获得更好性能的g的一个总结。包括从静态的融合方法blending(已经有了一堆的g,通过uniform:voting/average、non-uniform:linear/non-linear和conditio...

2015-07-15 13:25:00

阅读数:2221

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭