CVPR 2022 | 只需2张照片就能2D变3D,这个AI脑补蜡烛吹灭过程

来源:量子位

2张废片啪地一合!

错过的精彩瞬间立刻重现,还能从2D升到3D效果。

看,小男孩可爱的笑容马上跃然浮现:

d1e2346806eff208feb62350d3f9d7ae.gif

吹灭生日蛋糕蜡烛的瞬间也被还原了出来:

878e52cfb8730e270c39b0f113630d7d.gif

咧嘴笑起来的过程看着也太治愈了吧~

9348a73bce4a376e53a9a722754c92e4.gif

咱就是说,这回相机里熊孩子/毛孩子的废片终于有救了!

而且完全看不出是后期合成的效果,仿佛是原生拍摄的一般。

这就是谷歌、康奈尔大学、华盛顿大学最近联合推出的成果,能只用2张相近的照片还原出3D瞬间,目前已被CVPR 2022收录。

论文作者一作、二作均为华人,一作小姐姐本科毕业于浙江大学。

用2张照片正反向预测中间场景

这种方法适用于两张非常相似的照片,比如连拍时产生的一系列照片。

方法的关键在于将2张图片转换为一对基于特征的分层深度图像 (LDI),并通过场景流进行增强。

整个过程可以把两张照片分别看做是“起点”和“终点”,然后在这二者之间逐步预测出每一刻的变化。

具体来看,过程如下:

1f6ec82cb4f2c86ee25af7849a7da417.png

首先,将两张照片用单应矩阵(homegraphy)对齐,分别预测两张照片的稠密深度图。

然后将每个RGBD图像转换为彩色的LDI,通过深度感知修复背景中被遮挡的部分。

其中,RGB图像即为普通RGB图像+深度图像。

1ae216d54d840707dc8b51f4b9fb3b5e.png

之后用二维特征提取器修复LDI的每个颜色层,以获取特征层,从而生成两份特征图层。

下一步就到了模拟场景运动部分。

通过预测两个输入图像之间的深度和光流,就能计算出LDI中每个像素的场景流。

而如果想要两张图之间渲染出一个新的视图、并提升到3D,在此需要将两组带特征值的LDI提升到一对3D点云中,还要沿着场景流双向移动到中间的时间点。

然后再将三维的特征点投影展开,形成正向、反向的二维特征图及对应深度图。

最后将这些映射与时间线中对应时间点的权重线性混合,将结果传给图像合成网络,就能得到最后的效果了。

实验结果

从数据方面来看,该方法在所有误差指标上,均高于基线水平。

68a6c2d127879dc4574cbd72d8c4ba84.png

在UCSD数据集上,这一方法可以保留画面中的更多细节,如(d)所示。

3f0157b2bb78fbb2a97131caa9562a5b.png

在NVIDIA数据集上进行消融实验表明,该方法在提高渲染质量上表现也很nice。

5ea1d4c15cc654fe42de3f4d2f9beefd.png

不过也存在一些问题:当两张图像之间的改变比较大时,会出现物体错位的现象。

比如下图中酒瓶的瓶嘴移动了,不该发生变化的酒杯也摇晃了起来。

dab32ae3b3f51878e1d28c8c0c6c1094.gif

还有照片如果没有拍全的地方,在合成的时候难免会出现“截肢”的情况,比如下图中喂考拉的手。

d97f27c66ed3847ea814d2930776756c.gif

团队介绍

5d769a6ba0218058d62318fc055c3239.png

该研究的一作为Qianqian Wang,现在在康奈尔大学读博四。

她本科毕业于浙江大学,师从周晓巍。

研究兴趣为计算机视觉、计算机图形学和机器学习。

8ca8234611219cc22222587d75003048.png

二作是Zhengqi Li,博士毕业于康纳尔大学,本科毕业于明尼苏达大学,目前在Google Research。

曾获提名CVPR 2019最佳论文,谷歌2020博士奖研金,2020年Adobe Research奖学金,入围百度2021年AI华人新星百强榜单。

d87a1a7fa7213ab40c1d297b876af69b.png

参与此项研究的还有华盛顿大学教授Brian Curless

他还提出过另一种方法能够实现类似效果,同样只用到了2张照片,通过新型帧插值模型生成连贯的视频。

cd5b39c63499c5e4f16b470afb499a8d.gif

论文地址:
https://3d-moments.github.io/

猜您喜欢:

90103c2bb71faedb1069abb47cb1f2db.png 戳我,查看GAN的系列专辑~!

一顿午饭外卖,成为CV视觉前沿弄潮儿!

CVPR 2022 | 25+方向、最新50篇GAN论文

 ICCV 2021 | 35个主题GAN论文汇总

超110篇!CVPR 2021最全GAN论文梳理

超100篇!CVPR 2020最全GAN论文梳理

拆解组新的GAN:解耦表征MixNMatch

StarGAN第2版:多域多样性图像生成

附下载 | 《可解释的机器学习》中文版

附下载 |《TensorFlow 2.0 深度学习算法实战》

附下载 |《计算机视觉中的数学方法》分享

《基于深度学习的表面缺陷检测方法综述》

《零样本图像分类综述: 十年进展》

《基于深度神经网络的少样本学习综述》

399239d5dc8a9aa83fb27527b0af3a2c.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值