【快速幂算法】快速幂算法讲解及C语言实现(递归实现和非递归实现,附代码)

快速幂算法的C语言递归与非递归实现

快速幂算法

快速幂算法可用分治法实现

不难看出,对任意实数a和非负整数n,有:
an={1,n=0,a≠00,a=0(an2)2,n>0,n为偶数(an2)2∗a,n>0,n为奇数 a^n = \begin{cases} 1, & n = 0, a\neq 0 \\ 0, & a = 0 \\ \left( a^\frac{n}{2} \right)^2, & n > 0, n \text{为偶数} \\ \left( a^\frac{n}{2} \right)^2*a, & n > 0, n \text{为奇数} \end{cases} an=1,0,(a2n)2,(a2n)2a,n=0,a=0a=0n>0,n为偶数n>0,n为奇数
这里n/2是C语言中的整除计算,所以n为奇数时需要额外乘一个a
n=0可作为递归边界

递归实现

  • a如果等于0则返回0

  • n=0时作为递归边界返回1

  • n不等于0时,递归求an2a^\frac{n}{2}a2n的值,再根据n的奇偶性返回相应值

代码
double exp2(int a, int n){
	if (a == 0)
        return 0;
    if (n <= 0)
        return 1;
    else{
        int x = exp2(a, n/2);
        if (n % 2)
        	return x * x *a;
        return x * x;
    }
}

时间复杂度为O(logn)

非递归实现

非递归实现的方法在于将指数n分解乘二进制,将对应二进制位为1的乘起来,就得到最终的结果

例:计算3933^{93}393

93=(1011101)2=64+16+8+4+193=(1011101)_2=64+16+8+4+193=(1011101)2=64+16+8+4+1

393=364∗316∗38∗34∗33^{93}=3^{64}*3^{16}*3^{8}*3^{4}*3393=36431638343

代码
  • 变量s存储当前计算结果,并最终作为返回值

  • 变量b存储当前数位的乘方值

  • 遍历n的每一个二进制位

    • n & 1判断指数当前的最后一位是否为1
    • 每次循环将指数n右移一位(除以2),并将b累乘一次,计算当前的乘方
double exp2(int a, int n) {
    double b, s = 1.0;
    b = a;
    while (n > 0) {
        if (n & 1) {
            s *= b;
        }
        n /= 2;
        b *= b;
    }
    return s;
}

因为n有logn+1个二进制位,只需要次计算就能得到ana^nan,时间复杂度为O(n)

测试
double exp2(int a, int n) {
    double b, s = 1.0;
    b = a;
    while (n > 0) {
        if (n & 1) {
            s *= b;
        }
        n /= 2;
        b *= b;
    }
    return s;
}
int main()
{
	cout << exp2(3, 93);
	return 0;
}

结果

在这里插入图片描述

在这里插入图片描述

结果正确

由于递归算法涉及到对栈的操作,一般建议使用非递归算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值