快速幂算法
快速幂算法可用分治法实现
不难看出,对任意实数a和非负整数n,有:
an={1,n=0,a≠00,a=0(an2)2,n>0,n为偶数(an2)2∗a,n>0,n为奇数
a^n =
\begin{cases}
1, & n = 0, a\neq 0 \\
0, & a = 0 \\
\left( a^\frac{n}{2} \right)^2, & n > 0, n \text{为偶数} \\
\left( a^\frac{n}{2} \right)^2*a, & n > 0, n \text{为奇数}
\end{cases}
an=⎩⎪⎪⎪⎨⎪⎪⎪⎧1,0,(a2n)2,(a2n)2∗a,n=0,a=0a=0n>0,n为偶数n>0,n为奇数
这里n/2是C语言中的整除计算,所以n为奇数时需要额外乘一个a
n=0可作为递归边界
递归实现
-
a如果等于0则返回0
-
n=0时作为递归边界返回1
-
n不等于0时,递归求an2a^\frac{n}{2}a2n的值,再根据n的奇偶性返回相应值
代码
double exp2(int a, int n){
if (a == 0)
return 0;
if (n <= 0)
return 1;
else{
int x = exp2(a, n/2);
if (n % 2)
return x * x *a;
return x * x;
}
}
时间复杂度为O(logn)
非递归实现
非递归实现的方法在于将指数n分解乘二进制,将对应二进制位为1的乘起来,就得到最终的结果
例:计算3933^{93}393
93=(1011101)2=64+16+8+4+193=(1011101)_2=64+16+8+4+193=(1011101)2=64+16+8+4+1
393=364∗316∗38∗34∗33^{93}=3^{64}*3^{16}*3^{8}*3^{4}*3393=364∗316∗38∗34∗3
代码
-
变量s存储当前计算结果,并最终作为返回值
-
变量b存储当前数位的乘方值
-
遍历n的每一个二进制位
n & 1判断指数当前的最后一位是否为1- 每次循环将指数n右移一位(除以2),并将b累乘一次,计算当前的乘方
double exp2(int a, int n) {
double b, s = 1.0;
b = a;
while (n > 0) {
if (n & 1) {
s *= b;
}
n /= 2;
b *= b;
}
return s;
}
因为n有logn+1个二进制位,只需要次计算就能得到ana^nan,时间复杂度为O(n)
测试
double exp2(int a, int n) {
double b, s = 1.0;
b = a;
while (n > 0) {
if (n & 1) {
s *= b;
}
n /= 2;
b *= b;
}
return s;
}
int main()
{
cout << exp2(3, 93);
return 0;
}
结果


结果正确
由于递归算法涉及到对栈的操作,一般建议使用非递归算法
快速幂算法的C语言递归与非递归实现
1048

被折叠的 条评论
为什么被折叠?



