Modified U-Net (mU-Net) With Incorporation of Object-Dependent High Level Features for Improved Liver and Liver-Tumor Segmentation in CT Images
结合目标依赖高水平特征的改进U-Net (mU-Net)用于改进CT图像中的肝脏和肝脏肿瘤分割
背景
根据世界卫生组织(WHO)的数据,肝癌是2018年癌症导致死亡的五大最常见原因之一。肝脏与肿瘤靶区分割是肝脏放疗及其他介入治疗成功的重要步骤。
动机
传统U-Net提取目标边缘信息和对小物体分割效果不好。
主要原因:
-
跳跃连接造成低分辨率内容(高级特征)的重复。( l-1层的特征经过跳跃连接传递到 l+1 层,而其特征经过下采样传递到 l 层又经过上采样传到 l+1 层,这样两次实际上是重复的。低分辨率信息这样的重复导致了分割目标边界的模糊。)
-
高分辨率边缘信息在由网络提取的高级特征图中没有被充分表示。
-
池化后的分辨率损失使得小目标的分割效果较差。
创新点
在 U-Net 的残差路径上添加反卷积层和激活操作,避免低分辨率信息的重复传递
贡献
-
本文提出了一种基于对象的上采样算法,并对残差路径和跳跃连接进行了重新设计,克服了传统U-Net的局限性。改进的U-Net(MU-Net)能自适应地将残差路径中的特征合并到跳跃连接中的特征中,并且使得:(1)能够防止特征的低分辨率信息的重复;(2)能够提取大对象的高分辨率边缘信息的更高级别的特征;(3)能够通过使用最优数量的池化操作来提取小对象的更高级别的全局特征。与传统的U-Net相比,mU-Net能够更有效地处理物体的边缘信息和形态信息。
-
提供了mU-Net的详细数学描述,并报告了它在相关验证研究中的应用结果。
方法
网络整体结构如下:


mU-Net使用残差路径,基于对象尺寸自适应地滤除信息,来避免低分辨率特征图信息的重复。

引入渗透率的概念,用于衡量自适应地滤除信息的多少。
对较小的目标(28*28mm^2)(b),通过阻塞反卷积以保持小物体的空间信息,并通过在跳过连接中放置更多的卷积层以提取更高级别的特征。使得小物体特征的渗透率在早期阶段保持较高。
对较大的目标(c),为了提高特征提取的效率,跳跃连接中的特征应该限于边缘信息。
不足
-
因导数计算简单而使用的MSE损失函数可能不足以捕获结构相似性信息。可以采用soft-dice loss,以改善分割性能。
-
提出的网络可推广性较低。
-
由于内存的限制,模型使用2D切片进行训练。使用3D图像训练可以获得更好的效果。
文章提出了结合目标依赖的高水平特征的mU-Net模型,解决了传统U-Net在肝脏和肿瘤分割中的低分辨率信息重复和小目标分割问题。mU-Net通过自适应的信息滤除和反卷积层,优化了特征提取,提高了边缘和形态信息处理效率。然而,MSE损失函数可能不足够,建议使用soft-Dice损失以提升分割性能。模型目前基于2D切片训练,3D图像训练可能带来更好效果。
435

被折叠的 条评论
为什么被折叠?



