啵啵菜go
码龄5年
关注
提问 私信
  • 博客:38,553
    社区:42
    38,595
    总访问量
  • 23
    原创
  • 82,548
    排名
  • 509
    粉丝
  • 11
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:天津市
  • 加入CSDN时间: 2019-07-28
博客简介:

1

查看详细资料
  • 原力等级
    成就
    当前等级
    3
    当前总分
    380
    当月
    4
个人成就
  • 获得266次点赞
  • 内容获得24次评论
  • 获得365次收藏
  • 代码片获得624次分享
创作历程
  • 13篇
    2024年
  • 4篇
    2023年
  • 6篇
    2022年
成就勋章
TA的专栏
  • Mamba
    2篇
  • 论文阅读
    1篇
  • 计算机视觉
    1篇
  • CV基础
    3篇
  • 医学影像分析论文笔记
    8篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

使用 apex 进行混合精度训练时报错 if cached_x.grad_fn.next_functions[1][0].variable is not x:IndexError: tuple

使用 apex 进行混合精度训练时报错:IndexError: tuple index out of range修改报错的位置的源码:将if cached_x.grad_fn.next_functions[1][0].variable is not x:修改为:
原创
发布博客 2024.07.10 ·
236 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

解决使用PPIO欧派云服务器时无法使用sftp的问题

重启服务器后使用34869连接即可使用sftp。
原创
发布博客 2024.07.05 ·
283 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

解决linux下安装apex库报错:ModuleNotFoundError: No module named ‘packaging‘

【代码】解决linux下安装apex库报错:ModuleNotFoundError: No module named 'packaging'
原创
发布博客 2024.06.13 ·
634 阅读 ·
3 点赞 ·
0 评论 ·
3 收藏

【论文阅读】VMamba: Visual State Space Model

VMamba:视觉状态空间模型。
原创
发布博客 2024.05.08 ·
1116 阅读 ·
27 点赞 ·
1 评论 ·
22 收藏

Mamba部分代码解读及使用

意味着Mamba模块可以相对灵活地被插入到需要处理序列数据的神经网络架构中,例如可以替换Transformer的自注意力层,也可以作为额外的处理层被插入到现有的序列模型中,比如RNN、GRU或LSTM之后,用来进一步提取序列中的特征或增强模型对长期依赖性的捕捉能力。选择性扫描根据这些参数,执行具体的计算步骤,从而实现SSM的选择性功能。Mamba模型的关键操作,不仅包含了选择性扫描操作,还整合了其他处理步骤,如一维因果卷积、线性变换等,使用了核融合,以实现Mamba模型的完整计算流程。
原创
发布博客 2024.05.08 ·
2799 阅读 ·
20 点赞 ·
1 评论 ·
41 收藏

【论文笔记】KAN: Kolmogorov-Arnold Networks 全新神经网络架构KAN,MLP的潜在替代者

​ KAN可以先用一个参数较少的模型进行训练,然后通过使其样条网格更精细,将其扩展到具有更多参数的KAN,而不需要从头开始重新训练更大的模型。**持续学习:**借助样条设计的局部性天然优势,KAN可以在新数据上实现持续学习,规避了机器学习中存在的灾难性遗忘问题。**偏微分方程求解:**在求解泊松方程时,KAN比MLP更准确,敛速度更快,损失更低,并且具有更陡峭的神经标度率表现。​ 增加MLP的宽度和深度可以提高性能,但不同大小的MLP训练是独立的,训练这些模型的成本很高。
原创
发布博客 2024.05.07 ·
6484 阅读 ·
34 点赞 ·
0 评论 ·
27 收藏

使用XQuartz在macOS上运行docker中的x11GUI程序

通过homebrew安装xquartz,socat。进入xquartz的设置中"Preferences > Security" 勾选 "Allow connections from network clients"关闭xquartz转发x11 socket查看macOS的ip启动xquartz运行xhost并允许本机连接启动docker。
原创
发布博客 2024.04.24 ·
863 阅读 ·
4 点赞 ·
1 评论 ·
8 收藏

pytorch报错:RuntimeError: CUDA error: CUBLAS_STATUS_INVALID_VALUE

2. 输入张量的维度与 nn.Linner 层的维度不匹配。1. 一个操作数太大而无法放入 int32(或负数)经检查,我的维度没有问题。减小batchsize。
原创
发布博客 2024.04.13 ·
1145 阅读 ·
16 点赞 ·
1 评论 ·
19 收藏

【论文阅读】DejaVu:条件再生学习增强密集预测

DejaVu:条件再生学习增强密集预测CVPR 2023。
原创
发布博客 2024.01.31 ·
1143 阅读 ·
16 点赞 ·
0 评论 ·
17 收藏

【论文阅读】Mamba:具有选择状态空间的线性时间序列建模

Mamba模型是一个创新的线性时间序列建模方法,巧妙地结合了递归神经网络(RNN)和卷积神经网络(CNN)的特点,解决了处理长序列时的计算效率问题。它通过状态空间模型(SSM)的框架,实现了RNN的逐步处理能力和CNN的全局信息处理能力的融合。在训练阶段,Mamba使用卷积模式来一次性处理整个输入序列,而在推理阶段则采用递归模式,逐步处理输入,这样的设计使得Mamba既能充分利用CNN的高效并行处理能力,又能保持RNN在序列数据处理上的灵活性。​ Mamba模型的核心创新在于引入了选择性机制,这一机制通
原创
发布博客 2024.01.31 ·
4186 阅读 ·
37 点赞 ·
2 评论 ·
78 收藏

【论文阅读】从经典网络结构理解图像分类模型的发展(三)——GoogLeNet/Inception

GoogleNet及其Inception系列模型在深度学习领域是非常重要的里程碑,它们推动了网络架构的创新,并对后续的网络设计产生了深远影响。然而,随着深度学习技术的不断进步,一些特性被新的设计理念所取代,而其他一些特性则被保留并进一步发展。被淘汰的特性:5x5 卷积:随着Inception模型的发展,大尺寸的卷积核(如5x5)被逐渐淘汰,因为它们计算成本高,效率低下。在后续版本中,更多地使用了分解卷积的策略,例如使用一系列较小的卷积核(如3x3 或 1x1)来替代。辅助分类器。
原创
发布博客 2024.01.29 ·
970 阅读 ·
23 点赞 ·
1 评论 ·
22 收藏

【论文阅读】从经典网络结构理解图像分类模型的发展(二)——VGGNet

VGGNet对计算机视觉领域的贡献主要体现在其引入的更深层次的网络结构和统一的卷积层设计。VGGNet是最早证明通过增加网络深度可以显著提升性能的模型之一。它采用了多层统一大小(3x3)的卷积核,这种设计不仅简化了网络结构,还展示了小卷积核堆叠的有效性。VGGNet的这一设计哲学对后续更深层次网络的开发产生了重要影响,例如在ResNet等网络中就能看到其影响的踪迹。VGGNet在其设计中也有所改进和创新。与之前的网络如AlexNet相比,VGGNet通过使用小卷积核减少了单层的参数数量,同时增加了网络的
原创
发布博客 2024.01.27 ·
1063 阅读 ·
21 点赞 ·
0 评论 ·
23 收藏

【论文阅读】从经典网络结构理解图像分类模型的发展(一)——AlexNet

AlexNet在2012年的ImageNet挑战赛中取得突破性成功后,对深度学习和计算机视觉领域产生了深远的影响。许多它的特点和创新点在之后的研究和实践中被广泛采用,而有些则随着技术的发展逐渐被新方法所取代。沿用至今的特点和创新ReLU激活函数:ReLU 现在仍是大多数深度学习架构的标准激活函数,它有助于解决梯度消失问题,并加速神经网络的训练。使用GPU进行训练:利用GPU的并行计算能力大幅提高训练速度是现代深度学习实践的标准。多层结构。
原创
发布博客 2024.01.27 ·
967 阅读 ·
27 点赞 ·
1 评论 ·
21 收藏

VMware中Ubuntu20.04网卡丢失

VMware中Ubuntu20.04网卡丢失的恢复方法
原创
发布博客 2023.03.06 ·
5045 阅读 ·
24 点赞 ·
5 评论 ·
47 收藏

【论文笔记】nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation

nnU-Net:基于U-Net的自适应医学图像分割框架基于U-Net提出了nnU-Net框架,可以自动调整模型的体系结构以适应不同数据集。作者认为现有的模型在结构方面的调整可能会导致模型在某一些特定的数据集上过拟合,同时非架构的部分在图像分割任务中更重要。在常见的生物医学影像数据集上进行了测试,仅对原始U-Net进行微小调整的nnU-Net均取得了良好的分割性能,超过了很多修改的架构。
原创
发布博客 2023.02.14 ·
419 阅读 ·
0 点赞 ·
1 评论 ·
3 收藏

【论文笔记】nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation

nnU-Net:一种基于深度学习的自配置生物医学图像分割方法。nnU-Net的自动配置基于将领域知识提取成三个参数组:固定的、基于规则的和经验的参数。方法配置中的细节比体系结构变化对性能的影响更大不同的数据集需要不同的配置
原创
发布博客 2023.02.14 ·
460 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

【论文笔记】Modified U-Net (mU-Net) With Incorporation of Object-Dependent High Level Features for Improve

结合目标依赖高水平特征的改进U-Net (mU-Net)用于改进CT图像中的肝脏和肝脏肿瘤分割本文提出了一种基于对象的上采样算法,并对残差路径和跳跃连接进行了重新设计,克服了传统U-Net的局限性。改进的U-Net(MU-Net)能自适应地将残差路径中的特征合并到跳跃连接中的特征中,并且使得:(1)能够防止特征的低分辨率信息的重复;(2)能够提取大对象的高分辨率边缘信息的更高级别的特征;(3)能够通过使用最优数量的池化操作来提取小对象的更高级别的全局特征。与传统的U-Net相比,mU-Net能够更有效地处
原创
发布博客 2023.02.14 ·
629 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

使用checkpoint遇到的问题

使用checkpoint时,警告使用checkpoint时,警告UserWarning: None of the inputs have requires_grad=True.
原创
发布博客 2022.11.16 ·
4531 阅读 ·
2 点赞 ·
3 评论 ·
2 收藏

【论文笔记】E^2Net: An Edge Enhanced Network for Accurate Liver and Tumor Segmentation on CT Scans

提出了一种强大的2D分割模型,通过利用和强调肝脏和肿瘤的边缘信息作为补充信息来分割肝脏和肿瘤。模型使用边缘增强代价函数来训练,它显式地对网络中的互补和区分特征信息进行建模,以保持肝脏和肿瘤的边界。提出了一种深度交叉特征融合模块,用于双向提取目标及其边缘的多尺度特征。在公开可用的LITS和3DIRCADb数据集上的大量实验表明,与目前最先进的用于肝脏和肿瘤分割的2D、3D和混合模型相比,该方法具有更好的性能。...
原创
发布博客 2022.07.13 ·
439 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

【论文笔记】PnP-AdaNet: Plug-and-Play Adversarial Domain Adaptation Network…

PnP-AdaNet: Plug-and-Play Adversarial Domain Adaptation Network with a Benchmark at Cross-modality Cardiac SegmentationPnP-AdaNet:即插即用的对抗域适应网络,用于跨模态心脏分割的基准Domain adaptation, adversarial network, crossmodalityimages, cardiac segmentation, ben...
原创
发布博客 2022.06.27 ·
1038 阅读 ·
1 点赞 ·
1 评论 ·
1 收藏
加载更多