一、整数的储存
1、(int)上一部分博客后面我们引入了整数的2进制表⽰⽅法有三种,即 原码、反码和补码
三种表示方法均有符号位和数值位两部分,符号位都是用0表示“正”,用1表示“负”,而数值位最
高位的⼀位是被当做符号位,剩余的都是数值位。
例如:
signed int
取值范围为-2147483648~2147483647;
unsigned int
取值范围0~4294967295
1/0
1111111111111111111111111111111
0 ~ 11111111111111111111111111111111
详细见CSDN第二部分
2、(char)取值范围为signed-128~127,其中
储存时-128与128相同,signed:0~255。
从下面一个代码很好体现了 signed char的取值
#include <stdio.h>
int main()
{
char a[1000];
int i;
for(i=0; i<1000; i++)
{
a[i] = -1-i;
}
printf("%d",strlen(a));//答案为255,想不到吧!
return 0;
}
二、浮点数的储存
1、常见的浮点数:3.14159、1E10 (1.0x10^10,科学计数法)等,浮点数家族包括:
float、double、long double
类型。
浮点数表⽰的范围:<
float.h>
中定义
2、详解
首先通过一个代码引入主题
#include <stdio.h>
int main()
{
int n = 9;
float *pFloat = (float *)&n;
printf("n的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
*pFloat = 9.0;
printf("num的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
return 0;
}
答案是什么?想的到吗?

浮点数的储存与整数是不一样的:
根据国际标准IEEE(电气和电子工程协会)任意⼀个⼆进制浮点数V可以表示成下面的形式:
V=[(-1)^s ] M (2^E) {1.0<M<2.0} S取0或1表示正负
在32位环境下:
最高位存s的值,接着的8个bit位存E(E的二进制形式),剩下32个bit位存M的值(M的二进制)

在64位环境下:
最高位存s的值,接着11个bit位存E(E的二进制形式),剩下52个bit位存M的值(M的二进制)

注:M保存时计算机默认首位为1所以只存小数部分,读取时再添1。
这样做的⽬的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第⼀位的1舍去以后,等于可以保 存24位有效数字
至于E的情况分为以下几类:
(1)存储:
首先规定E是一个无符号整数,所以当E占8个bit位时取值范围:0~255,11个时:0~2047
但是我们知道科学计数法中的E是可以出现负数的,所以IEEE 754规定,存⼊内存时E的真实 值必须再加上⼀个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023 例 如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。
(2)读取:
a、E不全为0或不全为1
这时,浮点数就采⽤下⾯的规则表⽰,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第⼀位的1。
例如:0.5 的⼆进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则1.0*2^(-1),其阶码为-1+127(中间值)=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐0到23位
00000000000000000000000,则其⼆进制表示形式为:
0 01111110 00000000000000000000000
b、E全为0
这时,浮点数的指数E等于1-127
(-126)
(或者1-1023
(-1022)
)即为
真实值
,
有效数字M不再加上第⼀位的1,而是还原为0.xxxxxx的小数
。这样做是为了
表示±0,以及接近于0的很小的数字
。
如:0 00000000 00100000000000000000000(0.001)
c、E全为1
这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s)
如:
0 11111111 00010000000000000000000
那么:
&spm=1001.2101.3001.5002&articleId=134700763&d=1&t=3&u=e8e4f6a5241f49b1b7340c958287c24b)

被折叠的 条评论
为什么被折叠?



