EAO-SLAM 论文阅读

关键词:: #开源 #物体slam
项目地址: 链接

0 论文总概述

0.1 问题的背景

0.2 创新点

1.新颖的数据管理方法
2.使用iForest去除离群的3D点,有助于得到更加精准的尺度s

知识点

1 需要解答的问题

1。如何在系统中区分这个物体到底该使用什么表示呢?

2 背景知识

3 论文理论内容

image.png
image.png
检测器:YOLOv3
使用iForest去除外点,有利于初始化。
物体位姿、尺度优化和相机位姿优化在全局优化中进行优化

3.1 非参数检验

为了检测不同点云是否来自于同一个物体,采用秩和检验的方法
秩和检验方法:首先将两个样本混合在一起,对所有样本按照所考察的特征从小到大排序。在两类样本中分别计算所得排序序号之和T1 T2。秩和检验的基本思想是:如果一类样本的秩和显著地比另一类小(或大),则两类样本在所考察的特征上有显著差异。因此从理论上看,该检验方法与点云分布的形状相关。

image.png
假设点云P和点云Q来自于同一个物体,他们应该满足 f P = f Q f_P = f_Q fP=fQ,(离散的点云不一定满足高斯分布)
连接两个点云中不同的点: X = [ P ∣ Q ] = [ x 1 , x 2 , . . . , x ∣ X ∣ ] ∈ R 3 × ( ∣ P ∣ + ∣ Q ∣ ) X = [P|Q] = [x1, x2, . . . , x|X| ] ∈ R 3×(|P |+|Q|) X=[PQ]=[x1,x2,...,xX]R3×(P+Q)
将X按照三个维度进行排序
image.png
W Q W_Q WQ W p W_p Wp的方程相同, W = m i n ( W P , W Q ) W=min(W_P, W_Q) W=min(WP,WQ), 其中W是满足高斯分布的
这样的话,将非高斯分布转为了高斯分布
计算高斯分布的均值和协方差
image.png
同时上述假设需要满足:
image.png

α \alpha α是统计水平的值, 1 − α 1- \alpha 1α是置信度水平的值
image.png
如果P和Q满足方程4,说明他们来自同一个物体

3.2 Single-sample and Double-sample T-test

image.png
用来检测不同帧看到的物体质心是不是来自于同一个物体(质心满足高斯分布)
image.png
image.png
where t α / 2 , v t_{α/2, v} tα/2,v is the upper α/2 quantile of the t-distribution of v degrees of freedom, and v = ∣ C ∣ − 1 v = \sqrt{|C|} − 1 v=C 1. If t statistics satisfies (6), c and C comes from the same object

合并物体:
image.png
image.png
如果 t 满足方程6,并且 v = ∣ C 1 ∣ + ∣ C 2 ∣ − 2 v = |C_1| + |C_2| -2 v=C1+C22, 说明这两个物体是同一个物体

3.3 OBJECT SLAM

In this work, we leverage the cubes and quadrics to represent objects, rather than the complex instance-level or category-level model
对于规则的物体,如书,键盘,椅子使用立方体;对于不规则的物体,如球,瓶子,茶杯使用椭球
image.png
假设所有物体都放置在同一平面上
计算尺度的方式: s = ( m a x ( X ) − m i n ( X ) ) / 2 s = (max(X) − min(X))/2 s=(max(X)min(X))/2. 问题:会受到外点的影响,所以采用iForest去除外点。

3.3.1 iForest 去除外点

image.png

核心思想:离群点更容易被分离出来,而正常的点往往需要更多操作才能被分离。
image.png
C是归一化系数,H是权重,h(x)是x在树中的高度
image.png

3.3.2 物体初始化

(1)使用LSD提取线特征,并分配给每一个物体(2)根据线特征和2d投影框的角度误差优化物体
从-pi/2, pi/2随机选择30个角度,从中选取得分最高的角度

误差函数:
image.png
计算得分:
image.png
Na是物体内的所有线特征, Np是满足误差小于5度的线特征,E(e)是Np的角度平均值
image.png

3.3.3 联合优化

image.png
联合优化物体尺度,角度和相机位姿

4 实验部分

4.1 Distributions of Different Statistics

image.png

4.2 Ensemble Data Association Experiments

image.png
We compare our method with the commonly-used Intersection over Union (IoU) method, nonparametric test (NP), and t-test.

image.png
image.png

4.3 Qualitative Assessment of Object Pose Estimation

image.png
image.png

优化前后的角度变化:
image.png

5 后续改进方面

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lhy_6668

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值