关键词:: #开源 #物体slam
项目地址: 链接
0 论文总概述
0.1 问题的背景
0.2 创新点
1.新颖的数据管理方法
2.使用iForest去除离群的3D点,有助于得到更加精准的尺度s
知识点
1 需要解答的问题
1。如何在系统中区分这个物体到底该使用什么表示呢?
2 背景知识
3 论文理论内容
检测器:YOLOv3
使用iForest去除外点,有利于初始化。
物体位姿、尺度优化和相机位姿优化在全局优化中进行优化
3.1 非参数检验
为了检测不同点云是否来自于同一个物体,采用秩和检验的方法
秩和检验方法:首先将两个样本混合在一起,对所有样本按照所考察的特征从小到大排序。在两类样本中分别计算所得排序序号之和T1 T2。秩和检验的基本思想是:如果一类样本的秩和显著地比另一类小(或大),则两类样本在所考察的特征上有显著差异。因此从理论上看,该检验方法与点云分布的形状相关。
假设点云P和点云Q来自于同一个物体,他们应该满足
f
P
=
f
Q
f_P = f_Q
fP=fQ,(离散的点云不一定满足高斯分布)
连接两个点云中不同的点:
X
=
[
P
∣
Q
]
=
[
x
1
,
x
2
,
.
.
.
,
x
∣
X
∣
]
∈
R
3
×
(
∣
P
∣
+
∣
Q
∣
)
X = [P|Q] = [x1, x2, . . . , x|X| ] ∈ R 3×(|P |+|Q|)
X=[P∣Q]=[x1,x2,...,x∣X∣]∈R3×(∣P∣+∣Q∣)
将X按照三个维度进行排序
W
Q
W_Q
WQ 和
W
p
W_p
Wp的方程相同,
W
=
m
i
n
(
W
P
,
W
Q
)
W=min(W_P, W_Q)
W=min(WP,WQ), 其中W是满足高斯分布的
这样的话,将非高斯分布转为了高斯分布
计算高斯分布的均值和协方差
同时上述假设需要满足:
α
\alpha
α是统计水平的值,
1
−
α
1- \alpha
1−α是置信度水平的值
如果P和Q满足方程4,说明他们来自同一个物体
3.2 Single-sample and Double-sample T-test
用来检测不同帧看到的物体质心是不是来自于同一个物体(质心满足高斯分布)
where
t
α
/
2
,
v
t_{α/2, v}
tα/2,v is the upper α/2 quantile of the t-distribution of v degrees of freedom, and
v
=
∣
C
∣
−
1
v = \sqrt{|C|} − 1
v=∣C∣−1. If t statistics satisfies (6), c and C comes from the same object
合并物体:
如果 t 满足方程6,并且
v
=
∣
C
1
∣
+
∣
C
2
∣
−
2
v = |C_1| + |C_2| -2
v=∣C1∣+∣C2∣−2, 说明这两个物体是同一个物体
3.3 OBJECT SLAM
In this work, we leverage the cubes and quadrics to represent objects, rather than the complex instance-level or category-level model
对于规则的物体,如书,键盘,椅子使用立方体;对于不规则的物体,如球,瓶子,茶杯使用椭球
假设所有物体都放置在同一平面上
计算尺度的方式:
s
=
(
m
a
x
(
X
)
−
m
i
n
(
X
)
)
/
2
s = (max(X) − min(X))/2
s=(max(X)−min(X))/2. 问题:会受到外点的影响,所以采用iForest去除外点。
3.3.1 iForest 去除外点
核心思想:离群点更容易被分离出来,而正常的点往往需要更多操作才能被分离。
C是归一化系数,H是权重,h(x)是x在树中的高度
3.3.2 物体初始化
(1)使用LSD提取线特征,并分配给每一个物体(2)根据线特征和2d投影框的角度误差优化物体
从-pi/2, pi/2随机选择30个角度,从中选取得分最高的角度
误差函数:
计算得分:
Na是物体内的所有线特征, Np是满足误差小于5度的线特征,E(e)是Np的角度平均值
3.3.3 联合优化
联合优化物体尺度,角度和相机位姿
4 实验部分
4.1 Distributions of Different Statistics
4.2 Ensemble Data Association Experiments
We compare our method with the commonly-used Intersection over Union (IoU) method, nonparametric test (NP), and t-test.
4.3 Qualitative Assessment of Object Pose Estimation
优化前后的角度变化: