DPLVO论文阅读

DPLVO: Direct Point-Line Monocular Visual Odometry

0 论文总概述
0.1 存在的问题

1.普吕克坐标系下点与直线的距离

2.DSO中,2D点怎么计算深度?

3.为什么说共线信息是先验的,怎么利用的

4.特征点是角点还是光流法的形式

5.怎么在anchor image中用普吕克表示法记录,如何得到的法向量和方向向量

6.后端优化 具体是一个什么过程

7.如何实现的直线匹配?

8.什么情况下

0.2 创新点
0.3 知识点
1需要解决的问题
2论文内容

前言:

直线的表示:普吕克坐标系的表示 L=[m;d]

普吕克坐标系下点线距离:(相当于OX向量)

为什么要用m去减

假设直线为AB,点为X

考虑特殊情况,X在在AB的线段上

大小为、边组成的平行四边形的面积,,(叉乘计算要考虑方向)

普吕克坐标系下的位姿变换矩阵:

普吕克坐标系下直线的变换

2.1直接法

A.光度误差

image-20230407210606094

是仿射亮度变换系数?和是第i和j帧的曝光时间?是依赖于梯度的权重因子 是特征点p周围的点 是Huber核

所有关键帧的误差为:

image-20230407211358427

为第i帧的所有特征点,obs(p)为观测值

B.共线约束

(1)3D线段表示

线特征第一次出现的帧为anchor image,其余的帧为associate images

在anchor image中用普吕克表示法记录

先对图像去畸变,相机内参为K。是L在像素坐标系下(还是归一化平面?)的表示,是端点的齐次坐标,是L的端点

像素坐标系下的直线方程:

L的方向向量:

像素平面的法向量:

e1端点的向量(到底是哪个平面?):

image-20230407220100643

到的角度;相机光心到直线的距离

3D直线L的普吕克表示:(当方向向量是单位向量时,方向量大小就是原点到直线的距离)

image-20230407220444065

其中

(2)Anchor Image中的共线约束

是带有深度信息的在l上的点 在anchor image的Ii下

线上的点在三维下的表示:

image-20230407222401711

这个点的共线约束:

image-20230407222831216

线上的各个点,可以写成如下结果:

image-20230407222922095

(3)Associate Image 的共线约束

image-20230407224820648

lj 的各个采样点

(4)共线约束:

因为图像的运动模糊等问题,线段可能在某个区域模糊,不能确定。把这个区域定位 (大小怎么确定?)

image-20230407225233814

用衡量共线约束

没有像其他人一样对每个直线提取相同的采样点,文章使用固定的长度去分割直线,把分割的线段中梯度最大(点怎么看梯度)的点当作采样点

目的:由于较长的直线一般对其参数的不确定性较小,这种抽样方法可以通过引入更多的点来增加较长直线的权重。

image-20230407230238411

观测到该直线的帧的待定区域,的待定区域

C.误差整体函数

image-20230408103242890

image-20230408104314550

每一个2D直线选3个点?(这里怎么又固定了点的个数?)通过适当的调整可以发现,上述式子构成的矩阵也是稀疏的,因此可以高效求解

D.滑窗优化

(1)边缘化

点特征:采用常规的Schur的边缘化策略。

线特征:没有对线采用边缘化,把过去的观测当作约束,进而优化直线。同时,当anchor image和associate images移出时,添加先验共线约束

(2)先验共线约束

image-20230408110159944

L'是世界坐标系下的直线,Xk 为L的采样点

整个直线的先验为:

image-20230408110610936

假设直上有N个采样点,那么f的大小为3N?

(3)简化上述的先验信息

当直线L的anchor image或者associate images关键帧移出滑动窗口时,的矩阵会变大,下面论证此矩阵和N的大小无关

引理1:

image-20230408111614866

A是3N*6, B是6 *2

其中L是线的普吕克表示,由下列式子得到

image-20230408111702221

证明:将(4)

image-20230408113727649

代入(16)

image-20230408113705112

得:

image-20230408114613210

将(8)

image-20230408114656410

带入上式子,得:

image-20230408114744171

通过上面式子求的雅可比矩阵,写成分母布局的形式

image-20230408115018991

把每一个点的残差合并起来,写成下面形式:

image-20230408115118426

image-20230408115148298

引理2:定义 ;拆解为是

定义的精简版为,大小和线段上点的个数无关,gL 可以在高斯牛顿算法中替代fL

高斯牛顿方法中,gL 中迭代的各项分别为,大小为,N的数量越大,矩阵尺寸越小,计算速度越快

(4)ML的增量计算:为了计算gL ,需要先计算ML ,当N变大时,计算速度会减慢。因此采用一种增量的方式计算ML

前端

检测并初始化用于后端点、线、关键帧位姿

A.线的检测与管理

a.直线检测

包括了线的检测,初始化和匹配

b.合并直线

角度小于阈值且与原点间距离差不多

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lhy_6668

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值