Logistic 逻辑回归原理
线性回归
通过历史数据拟合出一条直线,用这条直线对新的数据进行预算。
首先是线性回归:
对于最基本的线性回归问题,公式如下:
其中x是自变量,
是权重参数,也就是我们需要去梯度上升求解的具体数值。
Sigmoid函数(将所有的取值映射到[0,1]之间,):
将两个公式合并:
Sigmoid函数的图形:
因为这里要做的内容是判断属于哪一种类型,但是线性回归预测出来的结果只能是一个实数,我们希望能够通过一个函数来实现最终预测值实现0/1的转换,所以这里就使用Sigmoid函数将 的数值映射到(0,1)之间。然后去求解代价函数,使代价最小,实现预测的分类。
代价函数
这时第一个想到的肯定是线性回归中的方法,利用误差平方代价函数:
但是我们将我们的sigmoid函数代入的话,我们发现这是一个非凸函数,这就意味着他会有很多的局部最小值,不利于我们最终的求解。
所以我们换一种思路来解决:
我们已知样本x和参数
的情况下,正样本和负样本的条件概率,

本文深入介绍了Logistic回归的原理,从线性回归开始,通过Sigmoid函数将预测值映射到[0,1]区间。接着探讨了代价函数,解释了为什么使用交叉熵而非平方误差,并介绍了最大似然估计的概念。最后,阐述了梯度上升法在求解最优参数中的应用,提供了详细的数学推导。"
137308666,22837982,SpringBoot整合微信支付实战,"['spring boot', '微信支付', 'java', '支付接口']
最低0.47元/天 解锁文章
601

被折叠的 条评论
为什么被折叠?



