Logistic 逻辑回归原理

本文深入介绍了Logistic回归的原理,从线性回归开始,通过Sigmoid函数将预测值映射到[0,1]区间。接着探讨了代价函数,解释了为什么使用交叉熵而非平方误差,并介绍了最大似然估计的概念。最后,阐述了梯度上升法在求解最优参数中的应用,提供了详细的数学推导。" 137308666,22837982,SpringBoot整合微信支付实战,"['spring boot', '微信支付', 'java', '支付接口']

Logistic 逻辑回归原理

线性回归

通过历史数据拟合出一条直线,用这条直线对新的数据进行预算。

首先是线性回归:

对于最基本的线性回归问题,公式如下:

                                              

其中x是自变量, 是权重参数,也就是我们需要去梯度上升求解的具体数值。

Sigmoid函数(将所有的取值映射到[0,1]之间,):


将两个公式合并:

Sigmoid函数的图形:

因为这里要做的内容是判断属于哪一种类型,但是线性回归预测出来的结果只能是一个实数,我们希望能够通过一个函数来实现最终预测值实现0/1的转换,所以这里就使用Sigmoid函数将 的数值映射到(0,1)之间。然后去求解代价函数,使代价最小,实现预测的分类。

代价函数

这时第一个想到的肯定是线性回归中的方法,利用误差平方代价函数:

但是我们将我们的sigmoid函数代入的话,我们发现这是一个非凸函数,这就意味着他会有很多的局部最小值,不利于我们最终的求解。

所以我们换一种思路来解决:

我们已知样本x和参数 的情况下,正样本和负样本的条件概率,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值