一致性维度在数据仓库总线中的作用:奠基石。
一致性维度:要么是同一的,要么是具有最佳粒度性与细节性的维度在严格数学意义上的子集。
一致性维度的三种基本的交付步骤。
数据整合的关键就是生成一致性维度,再通过一致性维度将来自不同数据源的事实数据合并到一起,供分析使用。通常来说,生成一致性维度有如下三个步骤:
1.标准化(Standardizing)
标准化的目的是使不同数据源的数据编码方式,数据格式等相同,为下一步数据匹配打下基础。
2.匹配(
一致性维度在数据仓库中扮演关键角色,作为数据整合的基础,确保不同源的事实数据能够准确合并。其创建过程包括标准化、匹配和筛选三个步骤:标准化统一数据源的编码和格式;匹配将不同属性和重复数据对应;筛选确定主数据,形成最终的一致性维度。
一致性维度在数据仓库总线中的作用:奠基石。
一致性维度:要么是同一的,要么是具有最佳粒度性与细节性的维度在严格数学意义上的子集。
一致性维度的三种基本的交付步骤。
数据整合的关键就是生成一致性维度,再通过一致性维度将来自不同数据源的事实数据合并到一起,供分析使用。通常来说,生成一致性维度有如下三个步骤:
1.标准化(Standardizing)
标准化的目的是使不同数据源的数据编码方式,数据格式等相同,为下一步数据匹配打下基础。
2.匹配(

被折叠的 条评论
为什么被折叠?