Nel 基础辅助库(Nel Misc)

Nel 基础辅助库(Nel Misc)

(参考英文链接:http://dev.ryzom.com/projects/ryzom/wiki/Nel_Misc)

简介
Nel基础库中包含了使用Nel其他库所用到的核心类型,功能函数和公共程序。它也独立包含了一些方便使用的辅助函数。

核心功能

基本数据类型
平台无关的类型定义,诸如sint32,uint32等等
异常处理基类
各种和显示层(displayers)连接的调试宏,例如断言(assertions),调试信息,警告(warnings)等等
方便的公用函数库和类型 – 数学库,字符串处理等等
支持智能指针的引用计数系统
智能指针支持(不再被引用时删除指向的数据)
Unicode字符串处理
显示层系统(Displayers),抽象了各种视图功能(例如标准输出(stdout),文件,控制台窗口等等)
基于显示层系统的日志信息管理系统。提供信息过滤功能,支持多个并发显示层。
类型注册系统,支持根据名称来实例化多态类型。

可移植性

操作系统信息获取,如获取操作系统(OS)的各种信息、处理器信息、内存信息等等
通用事件系统(c/f windows),支持输入设备如键盘、鼠标等
操作系统无关的线程和互斥量管理,提供POSIX以及Windows版本的实现
国际化文本管理系统

操作系统无关的时钟系统(从本机时钟获取)

多种3D图元和辅助函数支持
RGBA等多种色彩格式实现
大量支持包围盒和包围球的帮助函数

数学库

四元数类及其相关数学函数支持
矩阵类型及其3D数学支持
2D和3D向量类型,均支持整型、单精度和双精度浮点实现
平面(Plane)类型,支持向量投影,多边形或者线段与平面相交测试等等

内存管理

基于内存块和内存池的内存管理模式,有效降低内存碎片的生成
支持任意尺寸非均一数据块的FIFO管理器。尽管这个FIFO队列的尺寸是动态的,但是其内存的分配和释放始终保持了最小化

序列化(Serialization)和流数据

基于Java的序列化操作设计
文件版本支持,提供向后兼容机制
支持序列化的对象包括:基本类型,由可序列化类型组成的类型,支持序列化的STL容器,指向序列化数据的指针(包括一个引用计数系统用于序列化指向相同数据的不同指针——在加载时保证这些指针可以被恢复到从而再次指向相同的数据)
支持多态,即通过指向基类的指针序列化
实现了多种数据流,包括二进制内存数据流,ASCII内存字符数据流和二进制文件数据流

辅助函数

加载和处理不同格式的位图
提供了一个定位数据文件的路径查询系统
提供了一个字符串/整型配对系统(用于压缩信息类型)
提供了一个配置文件加载和管理系统,支持在不中断或重启程序的情况下识别配置文件改变以及重加载配置
多种用于处理字符串、整型、浮点等类型或者它们的数组的函数
提供一个根据字符串标识函数的列表管理系统,可以在指定一个字符串后调用相应的函数。这个系统对运行时的命令行操作非常有用。
提供一个多线程任务队列。这个系统很适合后台加载之类的应用
支持任意尺寸的bit数组操作
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值