map与reduce的用法

#高阶函数,接收函数作为输入或输出的函数

#map 函数接收两个参数,第一个参数是一个对数据处理的函数(这个函数只能接收一个参数), 第二个参数是一个可迭代对象 #map 函数的功能是对第二个参数中的每一个元素使用数据处理的函数进行处理并返回处理后 的值

#所以 map 函数返回的是一个迭代器,迭代器执行的过程就是使用数据处理函数可迭代对象 中的每一个元素处理的过程

num_l = [num for num in range(20,50) if num%3==0]

print(num_l)

def add_one(x):

return x+1

maped_num = map(add_one, num_l)

print(maped_num)

from collections import Iterator,Iterable

from types import GeneratorType

print(isinstance(maped_num, GeneratorType)) print(isinstance(maped_num, Iterator)) print(isinstance(maped_num, Iterable)) print(tuple(maped_num))

maped_num = map(lambda x:x+3, num_l)

print(maped_num) f

rom collections import Iterator,Iterable

from types import GeneratorType

print(isinstance(maped_num, GeneratorType)) print(isinstance(maped_num, Iterator)) print(isinstance(maped_num, Iterable)) print(tuple(maped_num))

#高阶函数  reduce 也是接收两个参数,第一个是函数,第二个是可迭代对象

#reduce 把第一个函数作用在可迭代对象上,这第一个函数必须接收两个参数,reduce 把结果继 续和序列的下一个元素做累积计算

#所以 reduce 函数返回的是累计计算的结果

>>>def add(x, y) : # 两数相加

... return x + y ...

>>> reduce(add, [1,2,3,4,5]) # 计算列表和:1+2+3+4+5

15

>>> reduce(lambda x, y: x+y, [1,2,3,4,5]) # 使用 lambda 匿名函数

15

#高阶函数 filter 实现对一个序列过滤的功能,它的第一个参数是定义过滤规则的函数,第二个 参数是要过滤的可迭代对象

#filter 返回的是一个迭代器

 

#sorted 函数也是一个高阶函数,带两个参数

#但跟前几个有不同是,它的第一个参数是要处理(排序)的数据,一个可迭代对象;后面参数则 是排序规则函数

#它返回的是排序后的一个列表对象

s = sorted(('bob', 'about', 'Zoo', 'Credit'))

print(s)

def kk(x):

return len(x)

s_new = sorted(('bob', 'about', 'Zoo', 'Credit'), key = kk, reverse = True)   #key参数来指定一个函数

print(s_new)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值