高斯消元
ITCharge
高效率编程,慢节奏生活。
展开
-
POJ1222 EXTENDED LIGHTS OUT【高斯消元】
题目大意:有一个 5*6 的矩阵,每个位置上都有一盏灯和一个开关,矩阵中 1 表示灯亮,0 表示灯灭。每当按下一个位置上的开关,这个位置上的灯和周围上、下、左、右共 5 个位置的灯状态都会翻转。问:在这个 5*6 的矩阵中,按下哪些位置上的按钮,可以把整个矩阵变为全灭状态。输出方案矩阵,矩阵中 1 表示按下开关, 0 表示没有按下开关。解题思路:参考博文:http://blog.csdn.net/shiren_Bod/article/details/5766907 上的解题原创 2015-09-09 12:37:32 · 718 阅读 · 0 评论 -
POJ1681 Painter's Problem【高斯消元法】
题目大意:有一个 N*N 的正方形的墙,其中一些墙是白色的,另一些墙是黄色的。Bob 想要把所有的墙都涂成黄色。但是他的画笔不是很好用。当他涂位置为 (i,j) 的砖时,会将周围 (i+1,j),(i-1,j),(i,j+1),(i,j-1) 位置上的砖改变颜色(黄色回变成白色,白色会变成黄色)。现在要计算出 Bob 最少需要涂多少块砖,会将所有的墙变为黄色。解题思路:每个位置上的砖最多涂一次,因为涂两次就和没涂是一样的。和 POJ1222 其实是一样的,不过需要判断是否有解。如原创 2015-09-14 16:28:39 · 715 阅读 · 0 评论 -
POJ1753 Flip Game【高斯消元法】
题目大意:有一个 4*4 的棋盘,棋盘上有黑色和白色的格子,每一次你可以翻其中的一个格子,这个格子(x,y)如果被翻,那么对应位置为(x-1,y)、(x+1,y)、(x,y-1)、(x,y+1) 格子的颜色会变成相对的颜色,现在求将棋盘全部翻为白色格子或者是黑色格子用的最少的步数是多少?如果无法把所有格子都翻为白色或者是黑色,那么输出 "Impossible"。解题思路:和 POJ1222 一样,一个格子变化最多改变 5 个格子,其中格子改变为 1,格子不改变为 0,则每个位原创 2015-09-15 10:31:22 · 780 阅读 · 0 评论 -
POJ1830 开关问题【高斯消元法】
题目大意:有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为开就变为关,如果为关就变为开。你的目标是经过若干次开关操作后使得最后N个开关达到一个特定的状态。对于任意一个开关,最多只能进行一次开关操作。现在计算有多少种可以达到指定状态的方法。解题思路:对于每个灯有改变或者不改变两种状态,用 1、0 来表示。构造矩阵 A[][],A[i][j] 表示操作第 i 个开关,原创 2015-09-14 16:50:48 · 2109 阅读 · 0 评论 -
POJ3185 The Water Bowls【高斯消元法】
题目大意:有 20 只碗排成一列,有的正面向上,有的反面向上。现在要把所有的碗变成正面向上。已知每次翻转一只碗,这只碗相邻的两只碗也跟着翻转。问:最少翻动几次能将所有的碗都正面朝上。解题思路:很简单的高斯消元解方程,对于有多个自由变元的情况,需要将自由变元枚举一下。原创 2015-09-15 11:21:12 · 528 阅读 · 0 评论 -
HDU3364 Lanterns【高斯消元法】
题目大意:有 N 盏灯,M 个开关,每个开关可以控制多盏灯,每盏灯可以被多盏开关控制。开始每盏灯都是开闭状态,给定每盏灯的最终状态,问有多少种方案可以到达。解题思路:对于每一盏灯,可以列出一个方程,这样就可以列出 N 个方程,有 M 个未知量。从而构成一个 N*M 的矩阵,对应每盏灯的最终状态。构建一个增广矩阵,用高斯消元法求解自由变元个数 Ans。因为开关只有开、关两种状态,所以答案为 2^Ans。原创 2015-09-16 22:19:34 · 2024 阅读 · 1 评论 -
POJ2947 Widget Factory【高斯消元】【同余方程】
题目大意:有 N 种装饰物,M 个已知条件,每个已知条件描述为:p s ta1,a2,…,ap (1 <= ai <= N)第一行表示从星期 s 到星期 t 一共生产了 p 件装饰物(工作天数可为 t - s + 1 + 7*x,因为可能生产不只一周)。规定每件装饰物至少生产 3 天,最多生产 9天。问:每种装饰物需要生产的天数。如果没有解,则输出"Inconsistent data.",如果有多解,则输出"Multiple solutions."如果有唯一解,则输出每种装饰原创 2015-09-16 22:41:32 · 578 阅读 · 0 评论