[leetcode] WordBreak && MaximumProductSubarray

  • 今天这两道题是两道动态规划的题目。

Word break

  • 问题描述:给定一个字符串s,和一个字典d。试问有没有办法使用d中的字符串构造出s。d中的每个字符串可以使用多次。
  • 分析
    • 最直观的解法肯定是暴力搜索。我们遍历d中所有组合,看能否构成s。如果不能则返回false,如果可以则返回true。
    • 这种暴力搜索肯定是超时,那么我们是否还有其他做法呢?
    • 我们试想如果s中的每个字符c,我们都可以在d中找到一个word是以c结尾,并且S中字符串c前 L e n w o r d Len_{word} Lenword和word也一致。那么我们只需要再遍历下一个字符就好。
    • 假设匹配的word的长度是L。字符C所在的位置是i
    • dp[i] 表示以i位置为结尾的子字符串是否能以dict构造。如果可以则true,如果不可以则为false。这样我们就把大问题化成了一个小问题
    • dp[i] = (S[i-Len:i] == word) && dp[i-Len-1]。解释:也就是说如果当前字母是匹配的,那么dp[i]还取决于dp[i-Len-1]必须他们也是True了,才可以。
    • 至此,我们就已经找到了转移方程。
bool wordBreakDP(string s, vector<string>& wordDict){
        // 利用动态规划的思路来解决
        int len = (int) s.length();
        if(len == 0)
            return true;
        int size = (int) wordDict.size();
        if(size == 0)
            return false;
        bool dp[len]; // 每一位表示的是,以s中对应位置结束的字符在wordDict中是否存在
        // dp[i] = dp[i-word.length()] && word == s[j:i]
        memset(dp, false, sizeof(dp));
        for(int i=0;i<len;i++){
            for(int j=0;j<size;j++){
                string word = wordDict[j];
                int word_len = (int) word.length();
                if(s[i] == word[word_len - 1] &&
                ((i- word_len + 1) >= 0
                && s.substr(i-word_len+1, word_len)==word)
                && (i-word_len < 0 || dp[i-word_len])){
                    dp[i] = true;
                    break;
                }else{
                    dp[i] = false;
                }
            }
        }
        return dp[len-1];
    }

MaximumProductSubarray

  • 问题描述:给定一个数组,里面可能包含负数。试计算连续子数组乘机的最大值。
  • 分析:
    • 首先如何转化成子问题?对于一个数组,我们可以计算nums[:len-1], nums[:len-2]对应的值,这样就可以转化成子问题。
    • 如果由子问题构造解?假设说我们已经知道nums[:len-1]里面的最大值了 R e s s u b Res_{sub} Ressub,我们如果计算nums连续乘积的最大值呢?
      • 如果说nums[len]是正的,那很简单,我们只需要返回 R e s s u b ∗ n u m s [ l e n ] Res_{sub}*nums[len] Ressubnums[len]即可。
      • 如果nums[len]是负的呢?我们直接返回 R e s s u b Res_{sub} Ressub吗?当然不是,如果nums[:len-1]中有负数,那么我们就要计算nums[:len-1]中的最小值。因为负负得正,所有最小值乘以当前这个数字就有可能是正的,也就有可能大于 R e s s u b Res_{sub} Ressub了。
      • 所有由此看来,我们不仅要维护一个最大结果,还要维护一个最小结果。
      • R e s i = m a x ( n u m s [ i ] , M a x i − 1 ∗ n u m s [ i ] , M i n i − 1 ∗ n u m s [ i ] ) Res_i = max(nums[i], Max_{i-1}*nums[i], Min_{i-1} * nums[i]) Resi=max(nums[i],Maxi1nums[i],Mini1nums[i])
      • Max_{i} = max(nums[i], Max_{i-1}*nums[i], Min_{i-1} * nums[i])
      • Min_{i} = min(nums[i], Max_{i-1}*nums[i], Min_{i-1} * nums[i])
  • 代码:
class Solution {
public:
    int maxProduct(vector<int>& nums) {
        int size = int(nums.size());
        int dp_max;
        int dp_min;
        dp_max = nums[0];
        dp_min = nums[0];
        int res = nums[0];
        for(int i=1;i<nums.size();i++){
            int cur_max = max(nums[i], max(dp_max * nums[i], dp_min * nums[i]));
            int cur_min = min(nums[i], min(dp_max * nums[i], dp_min * nums[i]));
            dp_max = cur_max;
            dp_min = cur_min;
            res = max(res, cur_max);
//            cout<<i<<", "<<dp_max<<", "<<dp_min<<endl;
        }
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>