递归的思想
以此类推是递归的基本思想。
具体来讲就是把规模大的问题转化为规模小的相似的子问题来解决。在函数实现时,因为解决大问题的方法和解决小问题的方法往往是同一个方法,所以就产生了函数调用它自身的情况。另外这个解决问题的函数必须有明显的结束条件,这样就不会产生无限递归的情况了。
递归的两个条件
- 可以通过递归调用来缩小问题规模,且新问题与原问题有着相同的形式。(自身调用)
- 存在一种简单情境,可以使递归在简单情境下退出。(递归出口)
递归算法的一般形式:
1
2
3
4
5
6
7
|
func( mode){
if
(endCondition){
//递归出口
end;
}
else
{
func(mode_small)
//调用本身,递归
}
}
|
求一个数的阶乘是练习简单而典型的例子,阶乘的递推公式为:factorial(n)=n*factorial(n-1),其中n为非负整数,且0!=1,1!=1
我们根据递推公式可以轻松的写出其递归函数:
1
2
3
4
5
6
7
8
|
public
static
long
factorial(
int
n)
throws
Exception {
if
(n <
0
)
throw
new
Exception(
"参数不能为负!"
);
else
if
(n ==
1
|| n ==
0
)
return
1
;
else
return
n * factorial(n -
1
);
}
|
递归的过程
在求解6的阶乘时,递归过程如下所示。
我们会惊奇的发现这个过程和栈的工作原理一致对,递归调用就是通过栈这种数据结构完成的。整个过程实际上就是一个栈的入栈和出栈问题。然而我们并不需要关心这个栈的实现,这个过程是由系统来完成的。
那么递归中的“递”就是入栈,递进;“归”就是出栈,回归。
我们可以通过一个更简单的程序来模拟递进和回归的过程:
1
2
3
4
5
6
7
8
9
10
11
12
|
/**
* 关于 递归中 递进和回归的理解
* @param n
*/
public
static
void
recursion_display(
int
n) {
int
temp=n;
//保证前后打印的值一样
System.out.println(
"递进:"
+ temp);
if
(n >
0
) {
recursion_display(--n);
}
System.out.println(
"回归:"
+ temp);
}
|
递归的例子
斐波那契数列
斐波那契数列的递推公式:Fib(n)=Fib(n-1)+Fib(n-2),指的是如下所示的数列:
1、1、2、3、5、8、13、21.....
按照其递推公式写出的递归函数如下:
1
2
3
4
5
6
7
8
|
public
static
int
fib(
int
n)
throws
Exception {
if
(n <
0
)
throw
new
Exception(
"参数不能为负!"
);
else
if
(n ==
0
|| n ==
1
)
return
n;
else
return
fib(n -
1
) + fib(n -
2
);
}
|
递归调用的过程像树一样,通过观察会发现有很多重复的调用。
归并排序
归并排序也是递归的典型应用,其思想:将序列分为若干有序序列(开始为单个记录),两个相邻有序的序列合并成一个有序的序列,以此类推,直到整个序列有序。
1
2
3
4
5
6
7
8
9
10
11
|
//递归过程是:在递进的过程中拆分数组,在回归的过程合并数组
public
static
void
mergeSort(
int
[] source,
int
[] temp,
int
first,
int
last) {
if
(first < last) {
int
mid = (first + last) /
2
;
mergeSort(source, temp, first, mid);
//归并排序前半个子序列
mergeSort(source, temp, mid +
1
, last);
//归并排序后半个子序列
merge(source, temp, first, mid, last);
//在回归过程中合并
}
else
if
(first == last) {
//待排序列只有一个,递归结束
temp[first] = source[first];
}
}
|
同样调用过程向树一样,但是它并没有重复调用的问题。在递进的过程中拆分数组,在回归的过程合并数组 。通过递归来实现归并排序,程序结构和条理非常清晰。