邻接表存储图Java实现

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/liangxiamoyi/article/details/52154842
/**
 * 图的边结点类
 * @author liangxiamoyi
 *
 */
public class Edge {
	/**
	 * 邻接顶点序号
	 */
	protected int verAdj;
	/**
	 * 边的权值
	 */
	protected int cost;
	/**
	 * 下一个边结点
	 */
	protected Edge link;
}

/**
 * 顶点表中的结点类
 * @author liangxiamoyi
 *
 */
public class Vertex {
	/**
	 * 顶点序号
	 */
	protected int verName;
	/**
	 * 边链表的头指针
	 */
	protected Edge adjacent;
}
<pre name="code" class="java">import java.util.Scanner;

/**
 * 邻接表存储的图
 * @author liangxiamoyi
 *
 */
public class Graph_List {
	/**
	 * 指向顶点表的引用
	 */
	private Vertex[] head;
	/*
	 * 当前顶点的个数
	 */
	private int vertexNum;
	/**
	 * 构造方法
	 */
	public Graph_List(){
		int e,from,to,weight;
		Scanner sc=new Scanner(System.in);
		System.out.println("请输入顶点个数;");
		this.vertexNum=sc.nextInt();
		this.head=new Vertex[this.vertexNum];
		for(int i=0;i<this.vertexNum;i++){
			head[i]=new Vertex();
			head[i].verName=i;
			head[i].adjacent=null;
		}
		System.out.println("请输入边的个数:");
	    e=sc.nextInt();
	    System.out.println("请输入各个边的起点,终点和权值:");
	    for(int i=0;i<e;i++){
	    	from=sc.nextInt();
	    	to=sc.nextInt();
	    	weight=sc.nextInt();
	    	Edge p=new Edge();
	    	p.verAdj=to;
	    	p.cost=weight;
	    	p.link=null;
	    	Edge q=head[from].adjacent;
	    	if(q==null){
	    		head[from].adjacent=p;
	    	}
	    	else{
	    		while(q.link!=null){
	    			q=q.link;
	    		}
	    		q.link=p;
	    	}
	    }	
	}
	/**
	 * 获得指定边的权值
	 * @param v1 顶点v1
	 * @param v2 顶点v2
	 * @return 权值
	 */
	public int getWeight(int v1,int v2){
		if(v1==-1||v2==-1)return -1;
		Edge p=head[v1].adjacent;
		while(p!=null){
			if(p.verAdj==v2)return p.cost;
			p=p.link;
		}
		return -1;
	}
	/**
	 * 获得v的第一个邻接顶点
	 * @param v 顶点v
	 * @return 第一个邻接顶点的序号
	 */
	public int getFirstNeighbor(int v){
		if(v==-1)return -1;
		Edge p=head[v].adjacent;
		if(p!=null)return p.verAdj;
		else return -1;
	}
	/**
	 * 获得v1相对于v2的第一个顶点
	 * @param v1 顶点v1
	 * @param v2 顶点v2
	 * @return 顶点的序号
	 */
	public int getNextNeighbor(int v1,int v2){
		if(v1==-1||v2==-1)return -1;
		Edge p=head[v1].adjacent;
		while(p.verAdj!=v2&&p!=null){
			p=p.link;
		}
		if(p==null)return -1;
		p=p.link;
		if(p==null)return -1;
		return p.verAdj;
	}
	/**
	 * 图的深度优先遍历
	 */
	public void depthFirstSearch(){
		int[] visited=new int[this.vertexNum];
		for(int i=0;i<this.vertexNum;i++){
			visited[i]=0;
		}
		recDepthFirstSearch(0,visited);
	}
	/**
	 * 从顶点v出发深度优先遍历的递归算法
	 * @param v 顶点v
	 * @param visited 标识访问与否的数组
	 */
	public void recDepthFirstSearch(int v,int[] visited){
		System.out.print(v+" ");
		visited[v]=1;
		int w=this.getFirstNeighbor(v);
		while(w!=-1){
			if(visited[w]==0){//若w未被访问过,从w递归访问
				recDepthFirstSearch(w, visited);
			}
			w=getNextNeighbor(v, w);//w为v相对w的下一个顶点
		}
	}
	/**
	 * 深度优先遍历的迭代算法
	 * @param v 起始顶点v
	 */
	public void iteDepthFirstSearch(int v){
		int[] visited=new int[this.vertexNum];
		for(int i=0;i<this.vertexNum;i++){
			visited[i]=0;
		}
		AStack<Integer> s=new AStack<Integer>(20);
		s.push(v);
		int w;
		while(!s.isEmpty()){
			w=s.pop();
			visited[w]=1;
			System.out.print(w+" ");
			int k=getFirstNeighbor(w);
			while(k!=-1){
				if(visited[k]==0)s.push(k);//没被访问过,压栈
				k=getNextNeighbor(w, k);
			}
		}
	}
	/**
	 * 广度优先遍历的迭代算法
	 * @param v 起始顶点v
	 */
	public void broadFirstSearch(int v){
		int[] visited=new int[this.vertexNum];
		for(int i=0;i<this.vertexNum;i++){
			visited[i]=0;
		}
		System.out.print(v+" ");
		visited[v]=1;
		AQueue<Integer> a=new AQueue<Integer>(20);
		a.insert(v);
		while(!a.isEmpty()){
			int q=a.delete();
			int p=getFirstNeighbor(q);
			while(p!=-1){
				if(visited[p]==0){
					System.out.print(p+" ");
					visited[p]=1;
					a.insert(p);
				}
				p=getNextNeighbor(q, p);
			}
		}
	}
	/**
	 * 对含有n个顶点的AOV网进行拓扑排序
	 */
	public void topoOrder(){
		int n=this.vertexNum;
		int[] count=new int[n];
		for(int i=0;i<n;i++){
			count[i]=0;
		}
		for(int i=0;i<n;i++){
			Edge p=head[i].adjacent;
			while(p!=null){
				count[p.verAdj]++;
				p=p.link;
			}
		}
		int top=-1;
		for(int i=0;i<n;i++){
			if(count[i]==0){//将入度为0 的顶点入栈
				count[i]=top;
				top=i;
			}
		}
		for(int i=0;i<n;i++){
			if(top==-1){
				System.out.println("a cycle in the network");
				return;
			}
			int j=top;
			top=count[top];//弹栈
			System.out.print(j+" ");
			Edge p=head[j].adjacent;
			while(p!=null){//删除与j关联的边
				int k=p.verAdj;
				if(--count[k]==0){//k的入度减1,若为0则k入栈
					count[k]=top;
					top=k;
				}
				p=p.link;
			}
		}
	}
	/**
	 * 计算关键路径
	 */
	public void criticalPath(){
		int i,k,e,l;
		int n=this.vertexNum;
		int[] ve=new int[n];//事件的最早发生时间
		int[] vl=new int[n];//事件的最迟发生时间
		for(i=0;i<n;i++){
			ve[i]=0;
		}
		for(i=0;i<n;i++){//按拓扑顺序计算各事件允许的最早发生时间
			Edge p=head[i].adjacent;
			while(p!=null){
				k=p.verAdj;
				if(ve[i]+p.cost>ve[k])ve[k]=ve[i]+p.cost;
				p=p.link;
			}
		}
		for(i=0;i<n;i++){
			vl[i]=ve[n-1];
		}
		for(i=n-2;i>=0;i--){//逆序计算事件的最迟发生时间
			Edge p=head[i].adjacent;
			while(p!=null){
				k=p.verAdj;
				if(vl[k]-p.cost<vl[i])vl[i]=vl[k]-p.cost;
				p=p.link;
			}
		}
		for(i=0;i<n;i++){//求各活动的最早开始时间和最晚开始时间
			Edge p=head[i].adjacent;
			while(p!=null){
				k=p.verAdj;
				e=ve[i];
				l=vl[k]-p.cost;
				if(l==e){
					System.out.println(i+"-"+k);
				}
				p=p.link;
			}
		}
	}
	/**
	 * <p>无权单源最短路径算法</p>
	 * <p>求顶点v到其他各顶点的最短路径</p>
	 * @param v 顶点v
	 */
	public void shortestPath(int v){
		int u,k;
		Edge p;
		int n=this.vertexNum;
		int[] path=new int[n];
		int[] dist=new int[n];
		AQueue<Integer> q=new AQueue<Integer>(20);
		for(int i=0;i<n;i++){
			path[i]=-1;
			dist[i]=-1;
		}
		dist[v]=0;
		q.insert(v);
		while(!q.isEmpty()){//将u的未访问的顶点入队,修改其path和dist值
			u=q.delete();
			p=head[u].adjacent;
			while(p!=null){
				k=p.verAdj;
				if(dist[k]==-1){
					q.insert(k);
					dist[k]=dist[u]+1;
					path[k]=u;
				}
				p=p.link;
			}
		}
		for(int i=0;i<n;i++){
			int w=i;
			StringBuffer st=new StringBuffer();
			st.append(i);
			while(path[w]!=v&&path[w]!=-1){
				int temp=path[w];
				st.append(" "+temp);
				w=path[w];
			}
			st.append(" "+v);
			st.reverse();
			System.out.println(v+"到"+i+"最短路径长度:"+dist[i]+" "+"最短路径:"+st);
		}
	}
	/**
	 * <p>解决正权单源最短路径问题的Dijkstra算法</p>
	 * <p>求从初始顶点v到其他各顶点的最短路径</p>
	 * @param v 初始顶点
	 */
	public void dShortestPath(int v){
		int u,k;
		int max=1000;
		Edge p;
		int n=this.vertexNum;
		int[] path=new int[n];
		int[] dist=new int[n];
		int[] s=new int[n];//记录i是否被访问过
		for(int i=0;i<n;i++){
			path[i]=-1;
			dist[i]=max;
			s[i]=0;
		}
		dist[v]=0;s[v]=1;
		p=head[v].adjacent;
		u=v;//u为即将访问的顶点
		for(int j=0;j<n;j++){
			while(p!=null){
				k=p.verAdj;
				if(s[k]!=1&&dist[u]+p.cost<dist[k]){
					dist[k]=dist[u]+p.cost;
					path[k]=u;
				}
				p=p.link;
			}
			//确定即将被访问的顶点u
			int ldist=max;
			for(int i=0;i<n;i++){
				if(dist[i]>0&&dist[i]<ldist&&s[i]==0){
					ldist=dist[i];
					u=i;
				}
			}
			s[u]=1;//访问u顶点
			p=head[u].adjacent;
		}
		for(int i=0;i<n;i++){
			int w=i;
			StringBuffer st=new StringBuffer();
			st.append(i);
			while(path[w]!=v&&path[w]!=-1){
				st.append(" "+path[w]);
				w=path[w];
			}
			st.append(" "+v);
			st.reverse();
			System.out.println(v+"到"+i+"最短路径长度:"+dist[i]+" "+"最短路径:"+st);
		}
	}
	//测试
	public static void main(String[] args){
//		测试数据
//		7
//		9
//		0  1 1 1 2 5 2 3 9 2 4 6 3 4 8 4 5 7 5 0 4 6 5 3 0 6 2
//		5
//		6
//		0 1 1 0 2 1 2 1 1 0 3 1 3 4 1 2 4 1 
//		9
//		12
//		0 1 6 0 2 4 0 3 5 1 4 1 2 4 1 2 5 1 3 5 2 4 6 9 4 7 8 5 7 4 6 8 2 7 8 4
//		7
//		12
//		0 1 1 2 0 1 0 3 1 1 3 1 1 4 1 3 2 1 3 4 1 2 5 1 3 5 1 3 6 1 4 6 1 6 5 1
//		6
//		20
//		0 1 12 1 0 12 0 2 5 2 0 5 1 2 5 2 1 5 0 3 8 3 0 8 1 4 20 4 1 20 2 3 6 3 2 6 2 4 10 4 2 10 2 5 8 5 2 8 3 5 4 5 3 4 4 5 9 5 4 9
		Graph_List g=new Graph_List();
		System.out.println("递归深度优先遍历:");
		g.depthFirstSearch();
		System.out.println("迭代深度优先遍历:");
		g.iteDepthFirstSearch(0);
		System.out.println("广度优先遍历:");
		g.broadFirstSearch(0);
		Graph_List gl=new Graph_List();
		System.out.println("拓扑排序:");
		gl.topoOrder();
		Graph_List gr=new Graph_List();
		System.out.println("关键路径为:");
		gr.criticalPath();
		Graph_List gs=new Graph_List();
		System.out.println("顶点0到各顶点的最短路径(无权):");
		gs.shortestPath(0);
		Graph_List gt=new Graph_List();
		gt.dShortestPath(0);
	}
}


测试结果:            
阅读更多

没有更多推荐了,返回首页