二叉树
- 本文讲述了二叉树的类型,及其两种表示方法(链式、数组式)和三种递归式遍历方法(前序、中序、后序);之后,介绍了二叉搜索树的常见操作(查找、插入、删除)及其应用(中序遍历二叉搜索树可以将节点按照升序进行排序,平均时间复杂度为log(n) )。
「二叉树 binary tree」是一种非线性数据结构,代表着祖先与后代之间的派生关系,体现着“一分为二”的 分治逻辑。与链表类似,二叉树的基本单元是节点,每个节点包含:值、左子节点引用、右子节点引用。
-
二叉树节点结构体
/* 二叉树节点结构体 */ struct TreeNode { int val; // 节点值 TreeNode *left; // 左子节点指针 TreeNode *right; // 右子节点指针 TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} //构建函数 };
-
常见术语
- 根节点:位于二叉树顶层的节点,没有父节点。
- 叶节点:没有子节点的节点,其两个指针均指向 None
- 边 :连接两个节点的线段,即节点引用(指针)。
- 节点所在的层:从顶至底递增,根节点所在层为 1 。
- 节点的度:节点的子节点的数量。在二叉树中,度的取值范围是 0、1、2 。
- 二叉树的高度:从根节点到最远叶节点所经过的边的数量。
- 节点的深度:从根节点到该节点所经过的边的数量。
- 节点的高度:从最远叶节点到该节点所经过的边的数量。
1. 二叉树类型
1.1 完美(满)二叉树 perfect binary tree
除了最底层外,其余所有层的节点都被完全填满。在完美二叉树中,除叶节点外,其余所有节点的度都为 2 ;若树高度为 ℎ ,则节点总数为 2 ℎ+1 − 1 ,呈现标准的指数级关系, 反映了自然界中常见的细胞分裂现象。
1.2 完全二叉树 complete binary tree
只有最底层的节点未被填满,且最底层节点尽量靠左。
1.3 完满二叉树 full binary tree
除了叶节点之外,其余所有节点都有两个子节点。
1.4 平衡二叉树 balanced binary tree
任意节点的左子树和右子树的高度之差的绝对值不超过 1
2. 二叉树的表示
2.1 链表表示法
/* 1.初始化二叉树 */
// 初始化节点
TreeNode* n1 = new TreeNode(1);
TreeNode* n2 = new TreeNode(2);
TreeNode* n3 = new TreeNode(3);
TreeNode* n4 = new TreeNode(4);
TreeNode* n5 = new TreeNode(5);
//构建引用指向(即指针)
n1->left = n2;
n1->right = n3;
n2->left = n4;
n2->right = n5;
/* 2.插入与删除节点 */
TreeNode* P = new TreeNode(0);
// 在 n1 -> n2 中间插入节点 P
n1->left = P;
P->left = n2;
// 删除节点 P
n1->left = n2;
/*3.前序遍历 */
void preOrder(TreeNode *root) {
if (root == nullptr)
return;
// 访问优先级:根节点 -> 左子树 -> 右子树
vec.push_back(root->val);
preOrder(root->left);
preOrder(root->right);
}
/* 4.中序遍历 */
void inOrder(TreeNode *root) {
if (root == nullptr)
return;
// 访问优先级:左子树 -> 根节点 -> 右子树
inOrder(root->left);
vec.push_back(root->val);
inOrder(root->right);
}
/* 5.后序遍历 */
void postOrder(TreeNode *root) {
if (root == nullptr)
return;
// 访问优先级:左子树 -> 右子树 -> 根节点
postOrder(root->left);
postOrder(root->right);
vec.push_back(root->val);
}
2.2 数组表示法
- 我们将所有节点按照层序遍历的顺序存储在一个数组中,则每个节点都对应唯一的数组索引。可以推导出父节点索引与子节点索引之间的“映射公式”:若节点的索引为 𝑖 ,则该节点的左子节点索引为 2𝑖+1,右子节点索引为2𝑖+2,父节点索引为(𝑖-1)/2。但在二叉树中通常存在许多 None ,需要在层序遍历序列中显式地写出所有 None (例如,使用 int 最大值 INT_MAX 标记空位),这样处理后,层 序遍历序列就可以唯一表示二叉树了。
/* 二叉树的数组表示 */
// 使用 int 最大值 INT_MAX 标记空位
vector<int> tree = {1, 2, 3, 4, INT_MAX, 6, 7, 8, 9, INT_MAX, INT_MAX, 12, INT_MAX, INT_MAX, 15};
- 值得说明的是,完全二叉树非常适合使用数组来表示。回顾完全二叉树的定义,None 只出现在最底层且靠右的位置,因此所有 None 一定出现在层序遍历序列的末尾。 这意味着使用数组表示完全二叉树时,可以省略存储所有 None ,非常方便。
-
以下代码实现了一个基于数组表示的二叉树
/* 数组表示下的二叉树类 */ class ArrayBinaryTree { public: /* 构造方法 */ ArrayBinaryTree(vector<int> arr) { tree = arr; } /* 节点数量 */ int size() { return tree.size(); } /* 获取索引为 i 节点的值 */ int val(int i) { // 若索引越界,则返回 INT_MAX ,代表空位 if (i < 0 || i >= size()) return INT_MAX; return tree[i]; } /* 获取索引为 i 节点的左子节点的索引 */ int left(int i) { return 2 * i + 1; } /* 获取索引为 i 节点的右子节点的索引 */ int right(int i) { return 2 * i + 2; } /* 获取索引为 i 节点的父节点的索引 */ int parent(int i) { return (i - 1) / 2; } /* 层序遍历 */ vector<int> levelOrder() { vector<int> res; // 直接遍历数组 for (int i = 0; i < size(); i++) { if (val(i) != INT_MAX) res.push_back(val(i)); } return res; } /* 前序遍历 */ vector<int> preOrder() { vector<int> res; dfs(0, "pre", res); return res; } /* 中序遍历 */ vector<int> inOrder() { vector<int> res; dfs(0, "in", res); return res; } /* 后序遍历 */ vector<int> postOrder() { vector<int> res; dfs(0, "post", res); return res; } private: vector<int> tree; /* 深度优先遍历 deep first search */ void dfs(int i, string order, vector<int> &res) { // 若为空位,则返回 if (val(i) == INT_MAX) return; // 前序遍历 if (order == "pre") res.push_back(val(i)); dfs(left(i), order, res); // 中序遍历 if (order == "in") res.push_back(val(i)); dfs(right(i), order, res); // 后序遍历 if (order == "post") res.push_back(val(i)); } };
-
二叉树的数组表示主要有以下优点:
- 数组存储在连续的内存空间中,对缓存友好,访问与遍历速度较快。
- 不需要存储指针,比较节省空间。
- 允许随机访问节点。
-
然而,数组表示也存在一些局限性:
- 数组存储需要连续内存空间,因此不适合存储数据量过大的树。
- 增删节点需要通过数组插入与删除操作实现,效率较低。
- 当二叉树中存在大量 None 时,数组中包含的节点数据比重较低,空间利用率较低。
3. 二叉搜索树 binary search tree
二叉搜索树满足以下条件:
- 对于根节点,左子树中所有节点的值 < 根节点的值 < 右子树中所有节点的值。
- 任意节点的左、右子树也是二叉搜索树,即同样满足条件1。
- 我们将二叉搜索树封装为一个类
ArrayBinaryTree
,并声明一个成员变量root
,指向树的根节点。
3.1 二叉搜索树的操作
1. 查找节点
-
给定要查找的目标节点值 num ,可以根据二叉搜索树的性质来查找。先声明一个节点 cur ,从二叉树的根节点 root 出发,循环比较节点值 cur.val 和 num 之间的大小关系:
- 若 cur.val < num ,说明目标节点在 cur 的右子树中,因此执行 cur = cur.right 。
- 若 cur.val > num ,说明目标节点在 cur 的左子树中,因此执行 cur = cur.left 。
- 若 cur.val = num ,说明找到目标节点,跳出循环并返回该节点。
-
二叉搜索树的查找操作与二分查找算法的工作原理一致,都是每轮排除一半情况。循环次数最多为二叉树的 高度,当二叉树平衡时,使用 𝑂(log 𝑛) 时间。
/* 查找节点 */ TreeNode *search(int num) { TreeNode *cur = root; // 循环查找,越过叶节点后跳出 while (cur != nullptr) { // 目标节点在 cur 的右子树中 if (cur->val < num) cur = cur->right; // 目标节点在 cur 的左子树中 else if (cur->val > num) cur = cur->left; // 找到目标节点,跳出循环 else break; } // 返回目标节点 return cur; }
2. 插入节点
-
给定一个待插入元素 num ,为了保持二叉搜索树“左子树 < 根节点 < 右子树”的性质,插入操作流程如图所示:
- 查找插入位置:与查找操作相似,从根节点出发,根据当前节点值和 num 的大小关系循环向下搜索,直 到越过叶节点(遍历至 None )时跳出循环。
- 在该位置插入节点:初始化节点 num ,将该节点置于 None 的位置。
-
在代码实现中,需要注意以下两点:
- 二叉搜索树不允许存在重复节点,否则将违反其定义。因此,若待插入节点在树中已存在,则不执行插 入,直接返回。
- 为了实现插入节点,我们需要借助节点 pre 保存上一轮循环的节点。这样在遍历至 None 时,我们可以 获取到其父节点,从而完成节点插入操作。
/* 插入节点 */ void insert(int num) { // 若树为空,则初始化根节点 if (root == nullptr) { root = new TreeNode(num); return; } TreeNode *cur = root, *pre = nullptr; // 循环查找,越过叶节点后跳出 while (cur != nullptr) { if (cur->val == num) // 找到重复节点,直接返回 return; pre = cur; if (cur->val < num) // 插入位置在 cur 的右子树中 cur = cur->right; else // 插入位置在 cur 的左子树中 cur = cur->left; } // 插入节点 TreeNode *node = new TreeNode(num); if (pre->val < num) pre->right = node; else pre->left = node; }
- 与查找节点相同,插入节点使用 𝑂(log 𝑛) 时间。
3. 删除节点
-
先在二叉树中查找到目标节点,再将其从二叉树中删除。 与插入节点类似,我们需要保证在删除操作完成后,二叉搜索树的性质仍然满足。 因此,我们需要根据目标节点的子节点数量,共分为 0、1 和 2 这三种情况,执行对应的删除节点操作。 如图所示:
-
当待删除节点的度为 0 时,表示该节点是叶节点,可以直接删除。
-
当待删除节点的度为 1 时,将待删除节点替换为其子节点即可。
-
当待删除节点的度为 2 时,我们无法直接删除它,而需要使用一个节点替换该节点。由于要保持二叉搜索树 “左 < 根 < 右”的性质,因此这个节点可以是右子树的最小节点或左子树的最大节点。
-
假设我们选择右子树的最小节点(即中序遍历的下一个节点),则删除操作流程如下:
-
找到待删除节点在“中序遍历序列”中的下一个节点,记为 tmp 。
-
将 tmp 的值覆盖待删除节点的值,并在树中递归删除节点 tmp 。
代码如下:
/* 删除节点 */ void remove(int num) { if (root == nullptr) // 若树为空,直接提前返回 return; TreeNode *cur = root, *pre = nullptr; while (cur != nullptr) { // 循环查找,越过叶节点后跳出 if (cur->val == num) // 找到待删除节点,跳出循环 break; pre = cur; if (cur->val < num) // 待删除节点在 cur 的右子树中 cur = cur->right; else // 待删除节点在 cur 的左子树中 cur = cur->left; } if (cur == nullptr) // 若无待删除节点,则直接返回 return; // 待删除节点的子节点数量 = 0 或 1 if (cur->left == nullptr || cur->right == nullptr) { // 当子节点数量 = 0 / 1 时, child = nullptr / 该子节点 TreeNode *child = cur->left != nullptr ? cur->left : cur->right; // 删除节点 cur if (cur != root) { if (pre->left == cur) pre->left = child; else pre->right = child; } else { root = child; // 若删除节点为根节点,则重新指定根节点 } // 释放内存 delete cur; } else { // 子节点数量 = 2 // 获取中序遍历中 cur 的下一个节点 TreeNode *tmp = cur->right; while (tmp->left != nullptr) { tmp = tmp->left; } int tmpVal = tmp->val; // 递归删除节点 tmp remove(tmp->val); // 用 tmp 覆盖 cur cur->val = tmpVal; } }
-
-
-
4. 节点遍历
- 二叉搜索树满足“左子节点 < 根 节点 < 右子节点”的大小关系,二叉树的中序遍历遵循“左 → 根 → 右”的遍历顺序,这意味着在二叉搜索树中进行中序遍历时,总是会优先遍历下一个最小节点,从而得出一个重要性质:二叉 搜索树的中序遍历序列是升序的。利用中序遍历升序的性质,我们在二叉搜索树中获取有序数据仅需 𝑂(𝑛) 时间,无须进行额外的排序操作, 非常高效。
5. 二叉搜索树的应用
-
二叉搜索树的各项操作(查找、插入、删除)的时间复杂度都是对数阶,具有稳定且高效的性能表现。但如果我们在二叉搜索树中不断地插入和删除节点,可能导致二叉树退化为链表,这时各种操作的时间复杂度也会退化为 𝑂(𝑛) 。
-
二叉搜索树常见应用:
- 用作系统中的多级索引,实现高效的查找、插入、删除操作。
- 作为某些搜索算法的底层数据结构。
节点 < 右子节点”的大小关系,二叉树的中序遍历遵循“左 → 根 → 右”的遍历顺序,这意味着在二叉搜索树中进行中序遍历时,总是会优先遍历下一个最小节点,从而得出一个重要性质:二叉 搜索树的中序遍历序列是升序的。利用中序遍历升序的性质,我们在二叉搜索树中获取有序数据仅需 𝑂(𝑛) 时间,无须进行额外的排序操作, 非常高效。
5. 二叉搜索树的应用
-
二叉搜索树的各项操作(查找、插入、删除)的时间复杂度都是对数阶,具有稳定且高效的性能表现。但如果我们在二叉搜索树中不断地插入和删除节点,可能导致二叉树退化为链表,这时各种操作的时间复杂度也会退化为 𝑂(𝑛) 。
[外链图片转存中…(img-kX4RgCAL-1724514112382)]
-
二叉搜索树常见应用:
- 用作系统中的多级索引,实现高效的查找、插入、删除操作。
- 作为某些搜索算法的底层数据结构。
- 用于存储数据流,以保持其有序状态。