BZOJ 2301 [HAOI2011]Problem b (莫比乌斯反演)

题目链接:
BZOJ 2301

题意:
对于给出的n 个询问,每次求有多少个数对(x,y) ,满足axbcydgcd(x,y)=k 
100% 的数据满足:1n500001ab500001cd500001k50000 

题解:

首先用容斥原理将一个询问拆成四个部分,问题等价于询问有多少个数对(x,y) 满足1xfloor(n/k),1yfloor(m/k) x y 互质。我们可以令f(i) 1xn,1ym gcd(x,y)=i 的数对(x,y) 的个数,F(i) 1xn,1ym i|gcd(x,y) 的数对的个数。
那么可以得到:
F(i)=ni mi  
反演后得到:
f(i)= . i|d μ(di )F(d)= . i|d μ(di )nd md  
枚举原题中k 的每一个倍数,我们就可以O(n) 处理每个询问,但这样还是不行。
进一步优化,观察式子,发现nd  最多有2n    个取值。
那么nd md  至多有2n   +2m − −    个取值。
枚举这2n   +2m − −    个取值,对莫比乌斯函数维护一个前缀和,就可以在O(n   ) 求出解。总时间复杂度O(nn   ) 
枚举除法的取值这种方法在莫比乌斯反演的应用中很常用。
就一行代码:

pos=min(n/(n/i),m/(m/i));

AC代码:

#include <bits/stdc++.h>
using namespace std;
const int maxn = 500010;
int a,b,c,d,k;
int tot;
int t;
int mu[maxn],prime[maxn],sum[maxn];
bool check[maxn] = {1,1};
void mobius()
{
    mu[1]=1;int n=50000;
    for(int i=2;i<=n;i++){
        if(!check[i]) prime[++tot]=i,mu[i]=-1;
        for(int j=1;j<=tot&&i*prime[j]<=n;j++){
            check[i*prime[j]]=1;
            if(i%prime[j]==0){mu[i*prime[j]]=0;break;}
            else mu[i*prime[j]]=-mu[i];
        }
    }
    for(int i=1;i<=n;i++) sum[i]=sum[i-1]+mu[i];
}
int calc(int n,int m)
{
    if(n>m) swap(n,m);
    int ans=0,pos=0;
    for(int i=1;i<=n;i=pos+1)
    {
        pos=min(n/(n/i),m/(m/i));
        ans+=(n/i)*(m/i)*(sum[pos]-sum[i-1]);
    }
    return ans; 
} 
int main()
{
    mobius();
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
        a--;c--;
        int ans = calc(b/k,d/k) - calc(a/k,d/k) - calc(c/k,b/k) + calc(a/k,c/k);
        printf("%d\n",ans);
    }
    return 0;
} 
发布了961 篇原创文章 · 获赞 1430 · 访问量 110万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 技术黑板 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览