bzoj 4154: [Ipsc2015]Generating Synergy k-d tree

版权声明:2333 https://blog.csdn.net/liangzihao1/article/details/82998314

Description

给定一棵以1为根的有根树,初始所有节点颜色为1,每次将距离节点a不超过l的a的子节点染成c,或询问点a的颜色
Input

第一行一个数T,表示数据组数
接下来每组数据的第一行三个数n,c,q表示结点个数,颜色数和操作数
接下来一行n-1个数描述2…n的父节点
接下来q行每行三个数a,l,c
若c为0,表示询问a的颜色
否则将距离a不超过l的a的子节点染成c
Output

设当前是第i个操作,y_i为本次询问的答案(若本次操作是一个修改则y_i为0),令z_i=i*y_i,请输出z_1+z_2+…+z_q模10^9+7
Sample Input

1

4 3 7

1 2 2

3 0 0

2 1 3

3 0 0

1 0 2

2 0 0

4 1 1

4 0 0
Sample Output

32
HINT

第1,3,5,7的询问的答案分别为1,3,3,1,所以答案为 11+20+33+40+53+60+7*1=32.

数据范围:

对于100%的数据T<=6,n,m,c<=10^5,

1<=a<=n,0<=l<=n,0<=c<=c

分析:
对于一个修改操作,相当于把dfs序为[dfn[x],last[x]][dfn[x],last[x]],深度为[dep[x],min(dep[x]+l,n)][dep[x],min(dep[x]+l,n)]的点染色,使用k-d解决即可。

代码:

/**************************************************************
    Problem: 4154
    User: liangzihao
    Language: C++
    Result: Accepted
    Time:2012 ms
    Memory:9316 kb
****************************************************************/
 
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
 
typedef long long LL;
 
const int N=100005;
const int MOD=1000000007;
const int inf=0x7fffffff;
 
int cnt,n,q,c,mx[N],mn[N],dfn[N],dep[N],tim,last[N],D,fa[N],root;
struct edge{int to,next;}e[N*2];
struct kdt{int l,r,tag,c,d[2],mn[2],mx[2];}t[N];
 
int read()
{
    int x=0,f=1;char ch=getchar();
    while (ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
 
void addedge(int u,int v)
{
    e[++cnt].to=v;e[cnt].next=last[u];last[u]=cnt;
    e[++cnt].to=u;e[cnt].next=last[v];last[v]=cnt;
}
 
void dfs(int x)
{
    dfn[x]=++tim;dep[x]=dep[fa[x]]+1;mn[x]=tim;
    for (int i=last[x];i;i=e[i].next)
    {
        if (e[i].to==fa[x]) continue;
        dfs(e[i].to);
    }
    mx[x]=tim;
}
 
bool cmp(kdt a,kdt b)
{
    return a.d[D]<b.d[D]||a.d[D]==b.d[D]&&a.d[D^1]<b.d[D^1];
}
 
void updata(int x,int y)
{
    t[x].mn[0]=min(t[x].mn[0],t[y].mn[0]);
    t[x].mn[1]=min(t[x].mn[1],t[y].mn[1]);
    t[x].mx[0]=max(t[x].mx[0],t[y].mx[0]);
    t[x].mx[1]=max(t[x].mx[1],t[y].mx[1]);
}
 
void pushdown(int d)
{
    if (t[d].tag==1) return;
    int w=t[d].tag;t[d].tag=1;
    if (t[d].l) t[t[d].l].tag=w,t[t[d].l].c=w;
    if (t[d].r) t[t[d].r].tag=w,t[t[d].r].c=w;
}
 
int build(int l,int r,int dd)
{
    D=dd;int mid=(l+r)/2;
    nth_element(t+l,t+mid,t+r+1,cmp);
    t[mid].tag=t[mid].c=1;t[mid].l=t[mid].r=0;
    t[mid].mx[0]=t[mid].mn[0]=t[mid].d[0];
    t[mid].mx[1]=t[mid].mn[1]=t[mid].d[1];
    if (l<mid) t[mid].l=build(l,mid-1,dd^1),updata(mid,t[mid].l);
    if (r>mid) t[mid].r=build(mid+1,r,dd^1),updata(mid,t[mid].r);
    return mid;
}
 
void ins(int d,int x1,int x2,int y1,int y2,int c,int dd)
{
    if (x1<=t[d].mn[0]&&x2>=t[d].mx[0]&&y1<=t[d].mn[0]&&y2>=t[d].mx[0])
    {
        t[d].tag=t[d].c=c;return;
    }
    if (t[d].mn[0]>x2||t[d].mx[0]<x1||t[d].mn[1]>y2||t[d].mx[1]<y1) return;
    pushdown(d);
    if (t[d].d[0]>=x1&&t[d].d[0]<=x2&&t[d].d[1]>=y1&&t[d].d[1]<=y2) t[d].c=c;
    if (t[d].l) ins(t[d].l,x1,x2,y1,y2,c,dd^1);
    if (t[d].r) ins(t[d].r,x1,x2,y1,y2,c,dd^1);
}
 
int query(int d,int x,int y,int dd)
{
    if (t[d].tag!=1) return t[d].tag;
    if (x==t[d].d[0]&&y==t[d].d[1]) return t[d].c;
    if (!dd)
        if (x<t[d].d[0]||x==t[d].d[0]&&y<t[d].d[1]) return query(t[d].l,x,y,dd^1);
        else return query(t[d].r,x,y,dd^1);
    else
        if (y<t[d].d[1]||y==t[d].d[1]&&x<t[d].d[0]) return query(t[d].l,x,y,dd^1);
        else return query(t[d].r,x,y,dd^1);
}
 
void solve()
{
    for (int i=1;i<=n;i++) t[i].d[0]=dfn[i],t[i].d[1]=dep[i];
    root=build(1,n,0);
    int ans=0;
    for (int z=1;z<=q;z++)
    {
        int x=read(),l=read(),c=read();
        if (!c) ans=(ans+(LL)z*query(root,dfn[x],dep[x],0)%MOD)%MOD;
        else ins(root,mn[x],mx[x],dep[x],dep[x]+l,c,0);
    }
    printf("%d\n",ans);
}
 
int main()
{
    int T=read();
    while (T--)
    {
        n=read();c=read();q=read();
        memset(last,0,sizeof(last));cnt=0;
        for (int i=2;i<=n;i++) fa[i]=read(),addedge(fa[i],i);
        tim=0;t[0].mn[0]=t[0].mn[1]=inf;t[0].mx[0]=t[0].mx[1]=0;
        dfs(1);
        solve();
    }
    return 0;
}
阅读更多
换一批

没有更多推荐了,返回首页