原创

HDU 3530 Subsequence(单调队列维护)

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/lianweicheng88/article/details/46981787

题意:给n个数的序列,子序列(连续的,题意描述得不是很清楚),要求它的子序列  m<=最大值(Max)-最小值(Min)<=k   (n<=10^5)

分析:和这道题类似

分析题意可知,其实就是求一个区间它的最值满足该条件,且该区间最长,则用两个单调队列维护此时序列的最大值q1和最小值q2。

现态假设  m<=q1-q2<=k

加入下列一个点:

①该点加入两个队列后会不会存在 q1-q2<m?答案是否定的,要使q1-q2<m,即使(q1-q2)减小——>q1减小或q2增大

显然这种情况是不可能的

②该点加入两个队列后不改变最大值和最小值

该点加入两个队列后,使得q1-q2>k,即(q1-q2)增大——>q1增大或者q2减小,这种情况是可能出现的,出现后怎么办呢?显然,要减小(q1-q1),是q1出队还是q2出队?由于要求的是连续的子序列,而这个点是后加进来的,因此,出队的是id 更小的。若id出队了,则用l=id记录下出队点的下标,ans=max(ans,i-l),这里可以看出当加入的点满足条件,l的值不变,但i+1,所以长度自然加1了;

#include <iostream>
#include <stdio.h>
#include <math.h>
#include <algorithm>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <string.h>
#include <map>
#include <set>
using namespace std;
#define inff 1000000000
int f1,f2,r1,r2;
int a[100005];
int q1[100005],q2[100005];
void push1(int i)//dijian
{
    while(f1<r1&&a[i]>a[q1[r1-1]])
    {
        r1--;
    }
    q1[r1++]=i;

}
void push2(int i)
{
    while(f2<r2&&a[i]<a[q2[r2-1]])
    {
        r2--;
    }
    q2[r2++]=i;

}
int main()
{
    int i,n,m,k,ans,l;
    while(scanf("%d%d%d",&n,&m,&k)!=EOF)
    {
        for(i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
        }
        f1=f2=r1=r2=0;
         l=0;
         ans=0;
        for(i=1;i<=n;i++)
        {
            push1(i);
            push2(i);
            if(a[q1[f1]]-a[q2[f2]]>k&&f1!=r1&&f2!=r2)
            {
                if(q1[f1]<q2[f2])
                {
                  l=q1[f1];
                   f1++;
                }
                else
                {
                    l=q2[f2];
                    f2++;
                }
            }
            if(f1!=r1&&f2!=r2&&a[q1[f1]]-a[q2[f2]]>=m)
                ans=max(ans,i-l);

        }
        printf("%d\n",ans);
    }
    return 0;
}

文章最后发布于: 2015-07-21 10:14:58
展开阅读全文
0 个人打赏

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 1024 设计师: 上身试试

分享到微信朋友圈

×

扫一扫,手机浏览