阿里的面试官问了个问题,如果corepollSize=10,MaxPollSize=20,如果来了25个线程 怎么办,
答案:
当一个任务通过execute(Runnable)方法欲添加到线程池时:
1、 如果此时线程池中的数量小于corePoolSize,即使线程池中的线程都处于空闲状态,也要创建新的线程来处理被添加的任务。
2、 如果此时线程池中的数量等于 corePoolSize,但是缓冲队列 workQueue未满,那么任务被放入缓冲队列。
3、如果此时线程池中的数量大于corePoolSize,缓冲队列workQueue满,再有新的线程,开始增加线程池的线程数量处理新的线程,直到maximumPoolSize;
4、 如果此时线程池中的数量大于corePoolSize,缓冲队列workQueue满,并且线程池中的数量等于maximumPoolSize,那么通过 handler所指定的策略来处理此任务。也就是:处理任务的优先级为:核心线程corePoolSize、任务队列workQueue、最大线程 maximumPoolSize,如果三者都满了,使用handler处理被拒绝的任务。
5、 当线程池中的线程数量大于 corePoolSize时,如果某线程空闲时间超过keepAliveTime,线程将被终止。这样,线程池可以动态的调整池中的线程数。
当线程数小于corePoolSize时,提交一个任务创建一个线程(即使这时有空闲线程)来执行该任务。
当线程数大于等于corePoolSize,首选将任务添加等待队列workQueue中(这里的workQueue是上面的BlockingQueue),等有空闲线程时,让空闲线程从队列中取任务。
当等待队列满时,如果线程数量小于maximumPoolSize则创建新的线程,否则使用拒绝线程处理器来处理提交的任务。
慢慢的启动到10,然后把剩下的15个放到阻塞队列里面,并开始在线程池里面创建线程,直到最大MaximumPoolSize;
当然是先放在阻塞队列(如果数量为0,就一直等待,LinkedBlockingDeque是一个由链表结构组成的双向阻塞队列,两边都可以进出的,那种,
参考:聊聊并发(七)——Java中的阻塞队列)里面了,BlockingQueue,面试官想知道具体的处理流程,我掌握的不深,于是下定决心好好查查:
尤其是那个车间里工人的例子,好好看看,理解线程很有用:
在上一章中我们概述了一下线程池,这一章我们看一下创建newFixedThreadPool的源码。例子还是我们在上一章中写的那个例子。
创建newFixedThreadPool的方法:
public static ExecutorService newFixedThreadPool(int nThreads) { return new ThreadPoolExecutor(nThreads, nThreads, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>()); }
public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory) { return new ThreadPoolExecutor(nThreads, nThreads, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>(), threadFactory); }
上面这两个方法是创建固定数量的线程池的两种方法,两者的区别是:第二种创建方法多了一个线程工厂的方法。我们继续看ThreadPoolExecutor这个类中的构造函数:
ThreadPoolExecutor的构造函数:
public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue) { this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, Executors.defaultThreadFactory(), defaultHandler); }
public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler) { if (corePoolSize < 0 || maximumPoolSize <= 0 || maximumPoolSize < corePoolSize || keepAliveTime < 0) throw new IllegalArgumentException(); if (workQueue == null || threadFactory == null || handler == null) throw new NullPointerException(); this.corePoolSize = corePoolSize; this.maximumPoolSize = maximumPoolSize; this.workQueue = workQueue; this.keepAliveTime = unit.toNanos(keepAliveTime); this.threadFactory = threadFactory; this.handler = handler; }
ThreadPollExecutor中的所有的构造函数最终都会调用上面这个构造函数,接下来我们来分析一下这些参数的含义:
corePoolSize:
maxinumPoolSize:
线程池中能容纳的最大线程数量,如果超出,则使用RejectedExecutionHandler拒绝策略处理。
keepAliveTime:
unit:
workQueue:
任务队列。当线程池中的线程都处于运行状态,而此时任务数量继续增加,则需要一个容器来容纳这些任务,这就是任务队列。这个任务队列是一个阻塞式的单端队列。
newFixedThreadPool和newSingleThreadExector使用的是LinkedBlockingQueue的无界模式(美团面试题目)。
threadFactory:
handler:
ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue RejectedExecutionHandler handler) corePoolSize: 线程池维护线程的最少线程数,也是核心线程数,包括空闲线程 maximumPoolSize: 线程池维护线程的最大线程数 keepAliveTime: 线程池维护线程所允许的空闲时间 unit: 程池维护线程所允许的空闲时间的单位 workQueue: 线程池所使用的缓冲队列 handler: 线程池对拒绝任务的处理策略
submit方法
public Future<?> submit(Runnable task) { if (task == null) throw new NullPointerException(); RunnableFuture<Void> ftask = newTaskFor(task, null); execute(ftask);//执行任务 return ftask; } /** * @throws RejectedExecutionException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ public <T> Future<T> submit(Runnable task, T result) { if (task == null) throw new NullPointerException(); RunnableFuture<T> ftask = newTaskFor(task, result); execute(ftask);//执行任务 return ftask; } /** * @throws RejectedExecutionException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ public <T> Future<T> submit(Callable<T> task) { if (task == null) throw new NullPointerException(); RunnableFuture<T> ftask = newTaskFor(task); execute(ftask);//执行任务 return ftask; }
这是三个重载方法,分别对应Runnable、带结果的Runnable接口和Callable回调函数。其中的newTaskFor也是一个重载的方法,它通过层层的包装,把Runnable接口包装成了适配RunnableFuture的实现类,底层实现如下:
public static <T> Callable<T> callable(Runnable task, T result) { if (task == null) throw new NullPointerException(); return new RunnableAdapter<T>(task, result); }
static final class RunnableAdapter<T> implements Callable<T> { final Runnable task; final T result; RunnableAdapter(Runnable task, T result) { this.task = task; this.result = result; } public T call() { task.run(); return result; } }
execute方法:
public void execute(Runnable command) { if (command == null) throw new NullPointerException(); int c = ctl.get(); if (workerCountOf(c) < corePoolSize) {// if (addWorker(command, true)) return; c = ctl.get(); } if (isRunning(c) && workQueue.offer(command)) { int recheck = ctl.get(); if (! isRunning(recheck) && remove(command)) reject(command); else if (workerCountOf(recheck) == 0) addWorker(null, false); } else if (!addWorker(command, false)) reject(command); }
try { w = new Worker(firstTask); final Thread t = w.thread; if (t != null) { final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { // Recheck while holding lock. // Back out on ThreadFactory failure or if // shut down before lock acquired. int rs = runStateOf(ctl.get()); if (rs < SHUTDOWN || (rs == SHUTDOWN && firstTask == null)) { if (t.isAlive()) // precheck that t is startable throw new IllegalThreadStateException(); workers.add(w); int s = workers.size(); if (s > largestPoolSize) largestPoolSize = s; workerAdded = true; } } finally { mainLock.unlock(); } if (workerAdded) { t.start(); workerStarted = true; } } } finally { if (! workerStarted) addWorkerFailed(w); }
Java中的线程池
我们一般将任务(Task)提交到线程池中运行,对于一个线程池而言,需要关注的内容有以下几点:
在什么样的线程中执行任务
任务按照什么顺序来执行(FIFO,LIFO,优先级)
最多有多少个任务能并发执行
最多有多个任务等待执行
如果系统过载则需要拒绝一个任务,如何通知任务被拒绝?
在执行一个任务之前或之后需要进行哪些操作
围绕上面的问题,我们来研究一下java中的线程池
线程池的创建
Exectors.newFixedThreadPool(int size):创建一个固定大小的线程池。 每来一个任务创建一个线程,当线程数量为size将会停止创建。当线程池中的线程已满,继续提交任务,如果有空闲线程那么空闲线程去执行任务,否则将任务添加到一个无界的等待队列中。
Exectors.newCachedThreadPool():创建一个可缓存的线程池。对线程池的规模没有限制,当线程池的当前规模超过处理需求时(比如线程池中有10个线程,而需要处理的任务只有5个),那么将回收空闲线程。当需求增加时则会添加新的线程。
Exectors.newSingleThreadExcutor():创建一个单线程的Executor,它创建单个工作者线程来执行任务,如果这个线程异常结束,它会创建另一个线程来代替。
Exectors.newScheduledThreadPool():创建一个固定长度的线程池,而且以延迟或定时的方式来执行任务。
上面都是通过工厂方法来创建线程池,其实它们内部都是通过创建ThreadPoolExector对象来创建线程池的。下面是ThreadPoolExctor的构造函数。
public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler) { ... }
我们看到构造函数是public类型的,所以我们也可以自定义自己的线程池。
在什么样的线程中执行任务?
java中对于任务的描述有两种,一种是Runnable型的任务,一种是Callable型的任务。前者运行结束后不会返回任何东西,而后者可以返回我们需要的计算结果,甚至异常。
在没有返回值的线程中运行
创建一个线程池,然后调用其execute方法,并将一个Runnable对象传递进去即可。
ExectorService exector = Exectors.newCachedThreadPool(); exector.execute(new Runnable(){ public void run(){ System.out.println("running..."); } });
在有返回值的线程中运行
ExectorService exector = Exectors.newCachedThreadPool(); Callable<Result> task = new Callable<Result>() { public Result call() { return new Computor().compute(); } }; Future<Result> future = exector.submit(task); result = future.get(); //改方法会一直阻塞,直到提交的任务被运行完毕
任务按照什么顺序来执行(FIFO,优先级)
如果任务按照某种顺序来执行的话,则任务一定是串行执行的。我们可以看到在ThreadPoolExecutor中第四个参数是BlockingQueue,提交的任务都先放到该队列中。如果传入不同的BlockQueue就可以实现不同的执行顺序。传入LinkedBlockingQueue则表示先来先服务,传入PriorityBlockingQueue则使用优先级来处理任务
Exectors.newSingleThreadExcutor()使用的是先来先服务策略
最多有多少个任务能并发执行
线程池中的线程会不断从workQueue中取任务来执行,如果没任务可执行,则线程处于空闲状态。
在ThreadPoolExecutor中有两个参数corePoolSize和maximumPoolSize,前者被称为基本大小,表示一个线程池初始化时,里面应该有的一定数量的线程。但是默认情况下,ThreadPoolExecutor在初始化是并不会马上创建corePoolSize个线程对象,它使用的是懒加载模式。
- 当线程数小于corePoolSize时,提交一个任务创建一个线程(即使这时有空闲线程)来执行该任务。
- 当线程数大于等于corePoolSize,首选将任务添加等待队列workQueue中(这里的workQueue是上面的BlockingQueue),等有空闲线程时,让空闲线程从队列中取任务。
- 当等待队列满时,如果线程数量小于maximumPoolSize则创建新的线程,否则使用拒绝线程处理器来处理提交的任务。
最多有多少的任务等待执行
这个问题和BlockingQueue相关。 BlockingQueue有三个子类,一个是ArrayBlockingQueue(有界队列),一个是LinkedBlockingQueue(默认无界,但可以配置为有界),PriorityBlockingQueue(默认无界,可配置为有界)。所以,对于有多少个任务等待执行与传入的阻塞队列有关。
newFixedThreadPool和newSingleThreadExector使用的是LinkedBlockingQueue的无界模式。而newCachedThreadPool使用的是SynchronousQueue,这种情况下线程是不需要排队等待的,SynchronousQueue适用于线程池规模无界。
如果系统过载则需要拒绝一个任务,如何通知任务被拒绝?
当有界队列被填满或者某个任务被提交到一个已关闭的Executor时将会启动饱和策略,即使用RejectedExecutionHandler来处理。JDK中提供了几种不同的RejectedExecutionHandler的实现:AbortPolicy,CallerRunsPolicy, DiscardPolicy和DiscardOldestPolicy。
AbortPolicy:默认的饱和策略。该策略将抛出未检查的RejectedExcutionException,调用者可以捕获这个异常,然后根据自己的需求来处理。
DiscardPolicy:该策略将会抛弃提交的任务
DiscardOldestPolicy:该策略将会抛弃下一个将被执行的任务(处于队头的任务),然后尝试重新提交该任务到等待队列
CallerRunsPolicy:该策略既不会抛弃任务也不会抛出异常,而是在调用execute()的线程中运行任务。比如我们在主线程中调用了execute(task)方法,但是这时workQueue已经满了,并且也不会创建的新的线程了。这时候将会在主线程中直接运行execute中的task。
在执行一个任务之前或之后需要进行哪些操作
ThreadPoolExecutor是可扩展的,它提供了几个可以重载的方法:beforeExecute,afterExecute和terminated,这里用到了面向的切面编程的思想。无论任务是从run中正常返回,还是抛出异常而返回,afterExectue都会被调用。如果 beforeExecute中抛出了一个 RunntimeException,那么任务将不会被执行,并且 afterExecute也不会被调用。
import java.util.concurrent.BlockingQueue; import java.util.concurrent.LinkedBlockingQueue; import java.util.concurrent.ThreadPoolExecutor; import java.util.concurrent.TimeUnit; import java.util.concurrent.atomic.AtomicLong; public class Test { public static void main(String[] args) { TimingThreadPool executor = new TimingThreadPool(5, 10, 1, TimeUnit.MINUTES, new LinkedBlockingQueue<Runnable>()); for (int i = 0; i < 5; i++) executor.execute(new Runnable() { @Override public void run() { System.out.println("running1...."); } }); executor.shutdown(); } } class TimingThreadPool extends ThreadPoolExecutor { private final ThreadLocal<Long> startTime = new ThreadLocal<Long>(); private final AtomicLong numTasks = new AtomicLong(); private final AtomicLong totalTime = new AtomicLong(); public TimingThreadPool(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue) { super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue); } @Override protected void beforeExecute(Thread t, Runnable r) { super.beforeExecute(t, r); startTime.set(System.nanoTime()); } @Override protected void afterExecute(Runnable r, Throwable t) { try { long endTime = System.nanoTime(); long taskTime = endTime - startTime.get(); numTasks.incrementAndGet(); totalTime.addAndGet(taskTime); } finally { super.afterExecute(r, t); } } @Override protected void terminated() { try { System.out.println(String.format("Terminated: arg time = %d", totalTime.get() / numTasks.get())); } finally { super.terminated(); } } }
上面的代码统计任务平均执行时间,在每个线程中beforeExecute和afertExecute都会执行一次,而terminated等线程池关闭的时候执行