zipkin
zipkin
为分布式链路调用监控系统,聚合各业务系统调用延迟数据,达到链路调用监控跟踪。
architecture
如图,在复杂的调用链路中假设存在一条调用链路响应缓慢,如何定位其中延迟高的服务呢?
- 日志: 通过分析调用链路上的每个服务日志得到结果
- zipkin:使用
zipkin
的web UI
可以一眼看出延迟高的服务
如图所示,各业务系统在彼此调用时,将特定的跟踪消息传递至zipkin
,zipkin在收集到跟踪信息后将其聚合处理、存储、展示等,用户可通过web UI
方便
获得网络延迟、调用链路、系统依赖等等。
zipkin
主要涉及四个组件 collector
storage
search
web UI
Collector
接收各service传输的数据Cassandra
作为Storage
的一种,也可以是mysql等,默认存储在内存中,配置cassandra
可以参考这里Query
负责查询Storage
中存储的数据,提供简单的JSON API
获取数据,主要提供给web UI
使用Web
提供简单的web界面
install
执行如下命令下载jar包
wget -O zipkin.jar 'https://search.maven.org/remote_content?g=io.zipkin.java&a=zipkin-server&v=LATEST&c=exec'
其为一个spring boot
工程,直接运行jar
nohup java -jar zipkin.jar &
访问 http://ip:9411
terminology
使用zipkin
涉及几个概念
-
Span
:基本工作单元,一次链路调用(可以是RPC,DB等没有特定的限制)创建一个span
,通过一个64位ID标识它,
span
通过还有其他的数据,例如描述信息,时间戳,key-value对的(Annotation)tag信息,parent-id
等,其中parent-id
可以表示span
调用链路来源,通俗的理解span
就是一次请求信息
-
Trace
:类似于树结构的Span
集合,表示一条调用链路,存在唯一标识
-
Annotation
: 注解,用来记录请求特定事件相关信息(例如时间),通常包含四个注解信息
cs - Client Start,表示客户端发起请求
sr - Server Receive,表示服务端收到请求
ss - Server Send,表示服务端完成处理,并将结果发送给客户端
cr - Client Received,表示客户端获取到服务端返回信息
-
BinaryAnnotation
:提供一些额外信息,一般已key-value对出现
概念说完,来看下完整的调用链路
上图表示一请求链路,一条链路通过Trace Id
唯一标识,Span
标识发起的请求信息,各span
通过parent id
关联起来,如图
整个链路的依赖关系如下:
完成链路调用的记录后,如何来计算调用的延迟呢,这就需要利用Annotation
信息
sr-cs 得到请求发出延迟
ss-sr 得到服务端处理延迟
cr-cs 得到真个链路完成延迟
brave
作为各调用链路,只需要负责将指定格式的数据发送给zipkin
即可,利用brave可快捷完成操作。
首先导入jar包pom.xml
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>1.3.6.RELEASE</version>
</parent>
<!-- https:
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-aop</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-actuator</artifactId>
</dependency>
<dependency>
<groupId>io.zipkin.brave</groupId>
<artifactId>brave-core</artifactId>
<version>3.9.0</version>
</dependency>
<!-- https:
<dependency>
<groupId>io.zipkin.brave</groupId>
<artifactId>brave-http</artifactId>
<version>3.9.0</version>
</dependency>
<dependency>
<groupId>io.zipkin.brave</groupId>
<artifactId>brave-spancollector-http</artifactId>
<version>3.9.0</version>
</dependency>
<dependency>
<groupId>io.zipkin.brave</groupId>
<artifactId>brave-web-servlet-filter</artifactId>
<version>3.9.0</version>
</dependency>
<dependency>
<groupId>io.zipkin.brave</groupId>
<artifactId>brave-okhttp</artifactId>
<version>3.9.0</version>
</dependency>
<!-- https:
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-api</artifactId>
<version>1.7.13</version>
</dependency>
<dependency>
<groupId>org.apache.httpcomponents</groupId>
<artifactId>httpclient</artifactId>
<version>4.5.1</version>
</dependency>
</dependencies>
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
利用spring boot
创建工程
Application.java
package com.lkl.zipkin;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
/**
*
* Created by liaokailin on 16/7/27.
*/
@SpringBootApplication
public class Application {
public static void main(String[] args) {
SpringApplication app = new SpringApplication(Application.class);
app.run(args);
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
建立controller
对外提供服务
HomeController.java
RestController
@RequestMapping("/")
public class HomeController {
@Autowired
private OkHttpClient client;
private Random random = new Random();
@RequestMapping("start")
public String start() throws InterruptedException, IOException {
int sleep= random.nextInt(100);
TimeUnit.MILLISECONDS.sleep(sleep);
Request request = new Request.Builder().url("http://localhost:9090/foo").get().build();
Response response = client.newCall(request).execute();
return " [service1 sleep " + sleep+" ms]" + response.body().toString();
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
HomeController
中利用OkHttpClient
调用发起http请求。在每次发起请求时则需要通过brave
记录Span
信息,并异步传递给zipkin
作为被调用方(服务端)也同样需要完成以上操作.
ZipkinConfig.java
package com.lkl.zipkin.config;
import com.github.kristofa.brave.Brave;
import com.github.kristofa.brave.EmptySpanCollectorMetricsHandler;
import com.github.kristofa.brave.SpanCollector;
import com.github.kristofa.brave.http.DefaultSpanNameProvider;
import com.github.kristofa.brave.http.HttpSpanCollector;
import com.github.kristofa.brave.okhttp.BraveOkHttpRequestResponseInterceptor;
import com.github.kristofa.brave.servlet.BraveServletFilter;
import okhttp3.OkHttpClient;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
/**
* Created by liaokailin on 16/7/27.
*/
@Configuration
public class ZipkinConfig {
@Autowired
private ZipkinProperties properties;
@Bean
public SpanCollector spanCollector() {
HttpSpanCollector.Config config = HttpSpanCollector.Config.builder().connectTimeout(properties.getConnectTimeout()).readTimeout(properties.getReadTimeout())
.compressionEnabled(properties.isCompressionEnabled()).flushInterval(properties.getFlushInterval()).build();
return HttpSpanCollector.create(properties.getUrl(), config, new EmptySpanCollectorMetricsHandler());
}
@Bean
public Brave brave(SpanCollector spanCollector){
Brave.Builder builder = new Brave.Builder(properties.getServiceName());
builder.spanCollector(spanCollector);
builder.traceSampler(Sampler.ALWAYS_SAMPLE);
Brave brave = builder.build();
return brave;
}
@Bean
public BraveServletFilter braveServletFilter(Brave brave){
BraveServletFilter filter = new BraveServletFilter(brave.serverRequestInterceptor(),brave.serverResponseInterceptor(),new DefaultSpanNameProvider());
return filter;
}
@Bean
public OkHttpClient okHttpClient(Brave brave){
OkHttpClient client = new OkHttpClient.Builder()
.addInterceptor(new BraveOkHttpRequestResponseInterceptor(brave.clientRequestInterceptor(), brave.clientResponseInterceptor(), new DefaultSpanNameProvider()))
.build();
return client;
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
-
SpanCollector
配置收集器
-
Brave
各工具类的封装,其中builder.traceSampler(Sampler.ALWAYS_SAMPLE)
设置采样比率,0-1之间的百分比
-
BraveServletFilter
作为拦截器,需要serverRequestInterceptor
,serverResponseInterceptor
分别完成sr
和ss
操作
-
OkHttpClient
添加拦截器,需要clientRequestInterceptor
,clientResponseInterceptor
分别完成cs
和cr
操作,该功能由
brave中的brave-okhttp
模块提供,同样的道理如果需要记录数据库的延迟只要在数据库操作前后完成cs
和cr
即可,当然brave提供其封装。
以上还缺少一个配置信息ZipkinProperties.java
package com.lkl.zipkin.config;
import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.context.annotation.Configuration;
/**
* Created by liaokailin on 16/7/28.
*/
@Configuration
@ConfigurationProperties(prefix = "com.zipkin")
public class ZipkinProperties {
private String serviceName;
private String url;
private int connectTimeout;
private int readTimeout;
private int flushInterval;
private boolean compressionEnabled;
public String getUrl() {
return url;
}
public void setUrl(String url) {
this.url = url;
}
public int getConnectTimeout() {
return connectTimeout;
}
public void setConnectTimeout(int connectTimeout) {
this.connectTimeout = connectTimeout;
}
public int getReadTimeout() {
return readTimeout;
}
public void setReadTimeout(int readTimeout) {
this.readTimeout = readTimeout;
}
public int getFlushInterval() {
return flushInterval;
}
public void setFlushInterval(int flushInterval) {
this.flushInterval = flushInterval;
}
public boolean isCompressionEnabled() {
return compressionEnabled;
}
public void setCompressionEnabled(boolean compressionEnabled) {
this.compressionEnabled = compressionEnabled;
}
public String getServiceName() {
return serviceName;
}
public void setServiceName(String serviceName) {
this.serviceName = serviceName;
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
则可以在配置文件application.properties
中配置相关信息
com.zipkin.serviceName=service1
com.zipkin.url=http://110.173.14.57:9411
com.zipkin.connectTimeout=6000
com.zipkin.readTimeout=6000
com.zipkin.flushInterval=1
com.zipkin.compressionEnabled=true
server.port=8080
那么其中的service1
即完成,同样的道理,修改配置文件(调整com.zipkin.serviceName
,以及server.port
)以及controller
对应的方法构造若干服务
service1
中访问http://localhost:8080/start
需要访问http://localhost:9090/foo
,则构造server2
提供该方法
server2
配置
com.zipkin.serviceName=service2
com.zipkin.url=http://110.173.14.57:9411
com.zipkin.connectTimeout=6000
com.zipkin.readTimeout=6000
com.zipkin.flushInterval=1
com.zipkin.compressionEnabled=true
server.port=9090
controller
方法
@RequestMapping("foo")
public String foo() throws InterruptedException, IOException {
Random random = new Random();
int sleep= random.nextInt(100);
TimeUnit.MILLISECONDS.sleep(sleep);
Request request = new Request.Builder().url("http://localhost:9091/bar").get().build();
Response response = client.newCall(request).execute();
String result = response.body().string();
request = new Request.Builder().url("http://localhost:9092/tar").get().build();
response = client.newCall(request).execute();
result += response.body().string();
return " [service2 sleep " + sleep+" ms]" + result;
}
在server2
中调用server3
和server4
中的方法
方法分别为
@RequestMapping("bar")
public String bar() throws InterruptedException, IOException {
Random random = new Random();
int sleep= random.nextInt(100);
TimeUnit.MILLISECONDS.sleep(sleep);
return " [service3 sleep " + sleep+" ms]";
}
@RequestMapping("tar")
public String tar() throws InterruptedException, IOException {
Random random = new Random();
int sleep= random.nextInt(1000);
TimeUnit.MILLISECONDS.sleep(sleep);
return " [service4 sleep " + sleep+" ms]";
}
将工程修改后编译成jar
形式
执行
nohup java -jar server4.jar &
nohup java -jar server3.jar &
nohup java -jar server2.jar &
nohup java -jar server1.jar &
访问http://localhost:8080/start
后查看zipkin
的web UI
点击条目可以查看具体的延迟信息
服务之间的依赖为
brave 源码
以上完成了基本的操作,下面将从源码角度来看下brave
的实现
首先从SpanCollector
来入手
@Bean
public SpanCollector spanCollector() {
HttpSpanCollector.Config config = HttpSpanCollector.Config.builder().connectTimeout(properties.getConnectTimeout()).readTimeout(properties.getReadTimeout())
.compressionEnabled(properties.isCompressionEnabled()).flushInterval(properties.getFlushInterval()).build();
return HttpSpanCollector.create(properties.getUrl(), config, new EmptySpanCollectorMetricsHandler());
}
从名称上看HttpSpanCollector
是基于http
的span
收集器,因此超时配置是必须的,默认给出的超时时间较长,flushInterval
表示span
的传递
间隔,实际为定时任务执行的间隔时间.在HttpSpanCollector
中覆写了父类方法sendSpans
@Override
protected void sendSpans(byte[] json) throws IOException {
HttpURLConnection connection = (HttpURLConnection) new URL(url).openConnection();
connection.setConnectTimeout(config.connectTimeout());
connection.setReadTimeout(config.readTimeout());
connection.setRequestMethod("POST");
connection.addRequestProperty("Content-Type", "application/json");
if (config.compressionEnabled()) {
connection.addRequestProperty("Content-Encoding", "gzip");
ByteArrayOutputStream gzipped = new ByteArrayOutputStream();
try (GZIPOutputStream compressor = new GZIPOutputStream(gzipped)) {
compressor.write(json);
}
json = gzipped.toByteArray();
}
connection.setDoOutput(true);
connection.setFixedLengthStreamingMode(json.length);
connection.getOutputStream().write(json);
try (InputStream in = connection.getInputStream()) {
while (in.read() != -1) ;
} catch (IOException e) {
try (InputStream err = connection.getErrorStream()) {
if (err != null) {
while (err.read() != -1) ;
}
}
throw e;
}
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
可以看出最终span
信息是通过HttpURLConnection
实现的,同样道理就可以推理brave
对brave-spring-resttemplate-interceptors
模块的实现,
只是换了一种http
封装。
Brave
@Bean
public Brave brave(SpanCollector spanCollector){
Brave.Builder builder = new Brave.Builder(properties.getServiceName());
builder.spanCollector(spanCollector);
builder.traceSampler(Sampler.ALWAYS_SAMPLE);
Brave brave = builder.build();
return brave;
}
Brave
类包装了各种工具类
public Brave build() {
return new Brave(this);
}
创建一个Brave
private Brave(Builder builder) {
serverTracer = ServerTracer.builder()
.randomGenerator(builder.random)
.spanCollector(builder.spanCollector)
.state(builder.state)
.traceSampler(builder.sampler).build();
clientTracer = ClientTracer.builder()
.randomGenerator(builder.random)
.spanCollector(builder.spanCollector)
.state(builder.state)
.traceSampler(builder.sampler).build();
localTracer = LocalTracer.builder()
.randomGenerator(builder.random)
.spanCollector(builder.spanCollector)
.spanAndEndpoint(SpanAndEndpoint.LocalSpanAndEndpoint.create(builder.state))
.traceSampler(builder.sampler).build();
serverRequestInterceptor = new ServerRequestInterceptor(serverTracer);
serverResponseInterceptor = new ServerResponseInterceptor(serverTracer);
clientRequestInterceptor = new ClientRequestInterceptor(clientTracer);
clientResponseInterceptor = new ClientResponseInterceptor(clientTracer);
serverSpanAnnotationSubmitter = AnnotationSubmitter.create(SpanAndEndpoint.ServerSpanAndEndpoint.create(builder.state));
serverSpanThreadBinder = new ServerSpanThreadBinder(builder.state);
clientSpanThreadBinder = new ClientSpanThreadBinder(builder.state);
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
封装了*Tracer
,*Interceptor
,*Binder
等
其中 serverTracer
当服务作为服务端
时处理span
信息,clientTracer
当服务作为客户端
时处理span
信息
Filter
BraveServletFilter
是http
模块提供的拦截器功能,传递serverRequestInterceptor
,serverResponseInterceptor
,spanNameProvider
等参数
其中spanNameProvider
表示如何处理span
的名称,默认使用method
名称,spring boot
中申明的filter bean
默认拦截所有请求
@Override
public void doFilter(ServletRequest request, ServletResponse response, FilterChain filterChain) throws IOException, ServletException {
String alreadyFilteredAttributeName = getAlreadyFilteredAttributeName();
boolean hasAlreadyFilteredAttribute = request.getAttribute(alreadyFilteredAttributeName) != null;
if (hasAlreadyFilteredAttribute) {
filterChain.doFilter(request, response);
} else {
final StatusExposingServletResponse statusExposingServletResponse = new StatusExposingServletResponse((HttpServletResponse) response);
requestInterceptor.handle(new HttpServerRequestAdapter(new ServletHttpServerRequest((HttpServletRequest) request), spanNameProvider));
try {
filterChain.doFilter(request, statusExposingServletResponse);
} finally {
responseInterceptor.handle(new HttpServerResponseAdapter(new HttpResponse() {
@Override
public int getHttpStatusCode() {
return statusExposingServletResponse.getStatus();
}
}));
}
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
首先来看requestInterceptor.handle
方法,
public void handle(ServerRequestAdapter adapter) {
serverTracer.clearCurrentSpan();
final TraceData traceData = adapter.getTraceData();
Boolean sample = traceData.getSample();
if (sample != null && Boolean.FALSE.equals(sample)) {
serverTracer.setStateNoTracing();
LOGGER.fine("Received indication that we should NOT trace.");
} else {
if (traceData.getSpanId() != null) {
LOGGER.fine("Received span information as part of request.");
SpanId spanId = traceData.getSpanId();
serverTracer.setStateCurrentTrace(spanId.traceId, spanId.spanId,
spanId.nullableParentId(), adapter.getSpanName());
} else {
LOGGER.fine("Received no span state.");
serverTracer.setStateUnknown(adapter.getSpanName());
}
serverTracer.setServerReceived();
for(KeyValueAnnotation annotation : adapter.requestAnnotations())
{
serverTracer.submitBinaryAnnotation(annotation.getKey(), annotation.getValue());
}
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
其中serverTracer.clearCurrentSpan()
清除当前线程上的span
信息,调用ThreadLocalServerClientAndLocalSpanState
中的
@Override
public void setCurrentServerSpan(final ServerSpan span) {
if (span == null) {
currentServerSpan.remove();
} else {
currentServerSpan.set(span);
}
}
currentServerSpan
为ThreadLocal
对象
private final static ThreadLocal<ServerSpan> currentServerSpan = new ThreadLocal<ServerSpan>() {
回到ServerRequestInterceptor#handle()
方法中final TraceData traceData = adapter.getTraceData()
@Override
public TraceData getTraceData() {
final String sampled = serverRequest.getHttpHeaderValue(BraveHttpHeaders.Sampled.getName());
if (sampled != null) {
if (sampled.equals("0") || sampled.toLowerCase().equals("false")) {
return TraceData.builder().sample(false).build();
} else {
final String parentSpanId = serverRequest.getHttpHeaderValue(BraveHttpHeaders.ParentSpanId.getName());
final String traceId = serverRequest.getHttpHeaderValue(BraveHttpHeaders.TraceId.getName());
final String spanId = serverRequest.getHttpHeaderValue(BraveHttpHeaders.SpanId.getName());
if (traceId != null && spanId != null) {
SpanId span = getSpanId(traceId, spanId, parentSpanId);
return TraceData.builder().sample(true).spanId(span).build();
}
}
}
return TraceData.builder().build();
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
其中SpanId span = getSpanId(traceId, spanId, parentSpanId)
将构造一个SpanId
对象
private SpanId getSpanId(String traceId, String spanId, String parentSpanId) {
return SpanId.builder()
.traceId(convertToLong(traceId))
.spanId(convertToLong(spanId))
.parentId(parentSpanId == null ? null : convertToLong(parentSpanId)).build();
}
将traceId
,spanId
,parentId
关联起来,其中设置parentId
方法为
public Builder parentId(@Nullable Long parentId) {
if (parentId == null) {
this.flags |= FLAG_IS_ROOT;
} else {
this.flags &= ~FLAG_IS_ROOT;
}
this.parentId = parentId;
return this;
}
如果parentId
为空为根节点,则执行this.flags |= FLAG_IS_ROOT
,因此后续在判断节点是否为根节点时,只需要执行(flags & FLAG_IS_ROOT) == FLAG_IS_ROOT
即可.
构造完SpanId
后看
serverTracer.setStateCurrentTrace(spanId.traceId, spanId.spanId,
spanId.nullableParentId(), adapter.getSpanName());
设置当前Span
public void setStateCurrentTrace(long traceId, long spanId, @Nullable Long parentSpanId, @Nullable String name) {
checkNotBlank(name, "Null or blank span name");
spanAndEndpoint().state().setCurrentServerSpan(
ServerSpan.create(traceId, spanId, parentSpanId, name));
}
ServerSpan.create
创建Span
信息
static ServerSpan create(long traceId, long spanId, @Nullable Long parentSpanId, String name) {
Span span = new Span();
span.setTrace_id(traceId);
span.setId(spanId);
if (parentSpanId != null) {
span.setParent_id(parentSpanId);
}
span.setName(name);
return create(span, true);
}
构造了一个包含Span
信息的AutoValue_ServerSpan
对象
通过setCurrentServerSpan
设置到当前线程上
继续看serverTracer.setServerReceived()
方法
public void setServerReceived() {
submitStartAnnotation(zipkinCoreConstants.SERVER_RECV);
}
为当前请求设置了server received event
void submitStartAnnotation(String annotationName) {
Span span = spanAndEndpoint().span();
if (span != null) {
Annotation annotation = Annotation.create(
currentTimeMicroseconds(),
annotationName,
spanAndEndpoint().endpoint()
);
synchronized (span) {
span.setTimestamp(annotation.timestamp);
span.addToAnnotations(annotation);
}
}
}
在这里为Span
信息设置了Annotation
信息,后续的
for(KeyValueAnnotation annotation : adapter.requestAnnotations())
{
serverTracer.submitBinaryAnnotation(annotation.getKey(), annotation.getValue());
}
设置了BinaryAnnotation
信息,adapter.requestAnnotations()
在构造HttpServerRequestAdapter
时已完成
@Override
public Collection<KeyValueAnnotation> requestAnnotations() {
KeyValueAnnotation uriAnnotation = KeyValueAnnotation.create(
TraceKeys.HTTP_URL, serverRequest.getUri().toString());
return Collections.singleton(uriAnnotation);
}
以上将Span
信息(包括sr)存储在当前线程中,接下来继续看BraveServletFilter#doFilter
方法的finally
部分
responseInterceptor.handle(new HttpServerResponseAdapter(new HttpResponse() {
@Override
public int getHttpStatusCode() {
return statusExposingServletResponse.getStatus();
}
}));
handle
方法
public void handle(ServerResponseAdapter adapter) {
LOGGER.fine("Sending server send.");
try {
for(KeyValueAnnotation annotation : adapter.responseAnnotations())
{
serverTracer.submitBinaryAnnotation(annotation.getKey(), annotation.getValue());
}
serverTracer.setServerSend();
} finally {
serverTracer.clearCurrentSpan();
}
}
首先配置BinaryAnnotation
信息,然后执行serverTracer.setServerSend
,在finally
中清除当前线程中的Span
信息(不管前面是否清楚成功,最终都将执行该不走),ThreadLocal
中的数据要做到有始有终
看serverTracer.setServerSend()
public void setServerSend() {
if (submitEndAnnotation(zipkinCoreConstants.SERVER_SEND, spanCollector())) {
spanAndEndpoint().state().setCurrentServerSpan(null);
}
}
终于看到spanCollector
收集器了,说明下面将看是收集Span
信息,这里为ss
注解
boolean submitEndAnnotation(String annotationName, SpanCollector spanCollector) {
Span span = spanAndEndpoint().span();
if (span == null) {
return false;
}
Annotation annotation = Annotation.create(
currentTimeMicroseconds(),
annotationName,
spanAndEndpoint().endpoint()
);
span.addToAnnotations(annotation);
if (span.getTimestamp() != null) {
span.setDuration(annotation.timestamp - span.getTimestamp());
}
spanCollector.collect(span);
return true;
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
首先获取当前线程中的Span
信息,然后处理注解信息,通过annotation.timestamp - span.getTimestamp()
计算延迟,
调用spanCollector.collect(span)
进行收集Span
信息,那么Span
信息是同步收集的吗?肯定不是的,接着看
调用spanCollector.collect(span)
则执行FlushingSpanCollector
中的collect
方法
@Override
public void collect(Span span) {
metrics.incrementAcceptedSpans(1);
if (!pending.offer(span)) {
metrics.incrementDroppedSpans(1);
}
}
首先进行的是metrics
统计信息,可以自定义该SpanCollectorMetricsHandler
信息收集各指标信息,利用如grafana
等展示信息
pending.offer(span)
将span
信息存储在BlockingQueue
中,然后通过定时任务去取出阻塞队列中的值,偷偷摸摸的上传span
信息
定时任务利用了Flusher
类来执行,在构造FlushingSpanCollector
时构造了Flusher
类
static final class Flusher implements Runnable {
final Flushable flushable;
final ScheduledExecutorService scheduler = Executors.newScheduledThreadPool(1);
Flusher(Flushable flushable, int flushInterval) {
this.flushable = flushable;
this.scheduler.scheduleWithFixedDelay(this, 0, flushInterval, SECONDS);
}
@Override
public void run() {
try {
flushable.flush();
} catch (IOException ignored) {
}
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
创建了一个核心线程数为1的线程池,每间隔flushInterval
秒执行一次Span
信息上传,执行flush
方法
@Override
public void flush() {
if (pending.isEmpty()) return;
List<Span> drained = new ArrayList<Span>(pending.size());
pending.drainTo(drained);
if (drained.isEmpty()) return;
int spanCount = drained.size();
try {
reportSpans(drained);
} catch (IOException e) {
metrics.incrementDroppedSpans(spanCount);
} catch (RuntimeException e) {
metrics.incrementDroppedSpans(spanCount);
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
首先将阻塞队列中的值全部取出存如集合中,最后调用reportSpans(List<Span> drained)
抽象方法,该方法在AbstractSpanCollector
得到覆写
@Override
protected void reportSpans(List<Span> drained) throws IOException {
byte[] encoded = codec.writeSpans(drained);
sendSpans(encoded);
}
转换成字节流后调用sendSpans
抽象方法发送Span
信息,此时就回到一开始说的HttpSpanCollector
通过HttpURLConnection
实现的sendSpans
方法。
more about is here
转载请注明
http://blog.csdn.net/liaokailin/article/details/52077620