liaomin416100569
码龄17年
关注
提问 私信
  • 博客:2,410,362
    社区:693
    2,411,055
    总访问量
  • 662
    原创
  • 753
    排名
  • 1,291
    粉丝
  • 102
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2008-03-06
博客简介:

liaomin416100569的专栏

查看详细资料
  • 原力等级
    成就
    当前等级
    6
    当前总分
    2,085
    当月
    15
个人成就
  • 获得1,127次点赞
  • 内容获得198次评论
  • 获得5,046次收藏
  • 代码片获得7,875次分享
创作历程
  • 11篇
    2024年
  • 22篇
    2023年
  • 15篇
    2022年
  • 4篇
    2021年
  • 7篇
    2020年
  • 25篇
    2019年
  • 49篇
    2018年
  • 79篇
    2017年
  • 25篇
    2016年
  • 47篇
    2015年
  • 24篇
    2014年
  • 29篇
    2013年
  • 67篇
    2012年
  • 86篇
    2011年
  • 254篇
    2010年
  • 59篇
    2009年
成就勋章
TA的专栏
  • transformers
    1篇
  • 大数据
    7篇
  • 管理
    1篇
  • php
    1篇
  • 前端
    6篇
  • 网络
    1篇
  • go
    2篇
  • servlet教程
  • activeMQ
    4篇
  • ant
    4篇
  • apache abdera
    1篇
  • axis
    2篇
  • C#
    6篇
  • C++
    35篇
  • css
    7篇
  • CXF
    5篇
  • dwr
    1篇
  • eclipse插件开发
    18篇
  • extjs
    3篇
  • Freemarker
  • ftp
    2篇
  • hibernate
    10篇
  • ibatis
    6篇
  • installshield
    5篇
  • JasperReport
    6篇
  • javamail
    4篇
  • javascript
    32篇
  • javaweb
    5篇
  • java基础
    70篇
  • java数据结构
    16篇
  • jboss
    3篇
  • jdbc
    6篇
  • jndi
    3篇
  • jquery
    8篇
  • Json
    4篇
  • jxl
    1篇
  • LDAP
    2篇
  • linux
    57篇
  • lucene+quartz
    17篇
  • memcached
    1篇
  • mysql
    14篇
  • ORACLE
    71篇
  • OSGI
    2篇
  • PowerDesigner
  • rmi
    2篇
  • RPC
    2篇
  • Spring
    24篇
  • struts
    5篇
  • svn架设
    5篇
  • UML
    2篇
  • vbscript
    11篇
  • webservice
    2篇
  • web服务器
    7篇
  • XML
    3篇
  • 免费空间
    1篇
  • 其他
    32篇
  • 分布式应用
    62篇
  • 多线程
    13篇
  • 安全性
    21篇
  • 技巧性文章
    3篇
  • 数字证书
    8篇
  • 数据库
    90篇
  • 数据库系统原理
    1篇
  • 服务器
    5篇
  • 标签
    1篇
  • 模式
    3篇
  • 正则表达式
    3篇
  • 项目管理
    11篇
  • 武术
  • 硬件和系统
    7篇
  • 软件工程
    2篇
  • photoshop技巧
    2篇
  • 汇编
    27篇
  • cjdbc
    3篇
  • 游戏
    5篇
  • 驱动
  • 测试
    5篇
  • office
    2篇
  • sap
    2篇
  • 系统学ORACLE
    19篇
  • hadoop
    5篇
  • 系统学驱动开发
    1篇
  • android
    10篇
  • redis
    1篇
  • zookeeper
    3篇
  • maven
    5篇
  • python
    4篇
  • 机器学习
    10篇
  • 容器
    10篇
兴趣领域 设置
  • 人工智能
    opencv计算机视觉机器学习
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

342人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

68000汇编实战01-编程基础

68000 汇编语言是为 Motorola 68000 微处理器设计的低级编程语言。68000 微处理器于 1979 年推出,因其强大的性能和灵活的架构而广泛应用于多种计算机系统和嵌入式设备中。以下是对 68000 汇编语言的背景、应用领域以及学习它的好处的详细介绍。
原创
发布博客 2024.11.28 ·
1184 阅读 ·
12 点赞 ·
0 评论 ·
17 收藏

Transformers实战05-模型量化

模型量化(Model Quantization)是一种优化技术,旨在减少机器学习模型的计算资源需求和存储空间,同时在精度损失最小化的前提下提高推理效率。量化通过将模型权重和激活函数的数值从高精度(如 32 位浮点数)转换为低精度(如 8 位整数),显著减少了模型大小和计算复杂度。
原创
发布博客 2024.08.06 ·
1620 阅读 ·
19 点赞 ·
0 评论 ·
13 收藏

Transformers实战04-微调gpt-2生成python代码。

GPT-2(Generative Pre-trained Transformer 2)是由OpenAI开发的一种基于Transformer架构的自然语言处理模型。Transformer架构:GPT-2基于Transformer模型架构,这是一种使用自注意力机制来捕捉输入序列中词语之间依赖关系的深度学习模型。预训练:GPT-2是一个预训练的语言模型,意味着它在大规模的文本数据上进行了预训练,以学习文本数据的统计特性和语言模式。无监督学习。
原创
发布博客 2024.08.05 ·
1028 阅读 ·
13 点赞 ·
0 评论 ·
22 收藏

Transformers实战03-PEFT库使用LORA方法微调VIT图像分类。

PEFT(Parameter-Efficient Fine-Tuning)是一个用于高效地将大型预训练模型适配到各种下游应用的库,而无需对模型的所有参数进行微调,因为这在计算上是非常昂贵的。PEFT 方法只微调少量的(额外的)模型参数——显著降低了计算和存储成本——同时其性能与完全微调的模型相当。这使得在消费者硬件上训练和存储大型语言模型(LLMs)变得更加可行。PEFT 集成了Diffusers和Accelerate库,以提供更快、更简单的方法来加载、训练和使用大型模型进行推理。
原创
发布博客 2024.06.04 ·
2987 阅读 ·
12 点赞 ·
0 评论 ·
25 收藏

Transformers实战02-BERT预训练模型微调

BERT(Bidirectional Encoder Representations from Transformers)是一种基于 Transformer 模型的预训练语言表示方法,由Google研究团队于2018年提出。BERT 通过在大规模文本语料上进行无监督的预训练,学习了通用的语言表示,并且在各种自然语言处理任务中取得了显著的性能提升。BERT仅使用了Transformer架构的Encoder部分。
原创
发布博客 2024.05.24 ·
2135 阅读 ·
21 点赞 ·
0 评论 ·
39 收藏

Transformers实战01-开箱即用的 pipelines

Transformers 是由 Hugging Face 开发的一个 NLP 包,支持加载目前绝大部分的预训练模型。随着 BERT、GPT 等大规模语言模型的兴起,越来越多的公司和研究者采用 Transformers 库来构建 NLP 应用,官网地址。它提供了各种预训练的 Transformer 模型,包括 BERT、GPT、RoBERTa、DistilBERT 等。
原创
发布博客 2024.05.14 ·
1643 阅读 ·
9 点赞 ·
0 评论 ·
15 收藏

Transformer模型详解05-Decoder 结构

Transformer 模型由编码器(Encoder)和解码器(Decoder)两部分组成。这里我会着重描述解码器的结构以及在预训练、输入输出和预测时的输入输出。自注意力层(Self-Attention Layers):与编码器类似,解码器也包含多个自注意力层,用于在解码器端对输出序列的不同位置进行关注,解码器中的自注意力层被修改为接受一个遮盖(masking)向量,以便在计算注意力权重时将未来的信息屏蔽掉,只关注当前位置之前的信息。。
原创
发布博客 2024.05.14 ·
1994 阅读 ·
9 点赞 ·
0 评论 ·
14 收藏

Transformer模型详解04-Encoder 结构

Transformer 模型中的 Encoder 层主要负责将输入序列进行编码,将输入序列中的每个词或标记转换为其对应的向量表示,并且捕获输入序列中的语义和关系。词嵌入(Word Embedding):将输入序列中的每个词或标记映射为其对应的词嵌入向量。这些词嵌入向量包含了词语的语义信息,并且可以在模型中进行学习。位置编码(Positional Encoding):因为 Transformer 模型不包含任何关于序列顺序的信息,为了将位置信息引入模型,需要添加位置编码。
原创
发布博客 2024.05.13 ·
3320 阅读 ·
22 点赞 ·
0 评论 ·
18 收藏

Transformer模型详解03-Self-Attention(自注意力机制)

下图是论文中 Transformer 的内部结构图,左侧为 Encoder block,右侧为 Decoder block。红色圈中的部分为 Multi-Head Attention,是由多个 Self-Attention组成的,可以看到 Encoder block 包含一个 Multi-Head Attention,而 Decoder block 包含两个 Multi-Head Attention (其中有一个用到 Masked)。
原创
发布博客 2024.05.10 ·
2018 阅读 ·
26 点赞 ·
0 评论 ·
25 收藏

Transformer模型详解02-Positional Encoding(位置编码)

文章目录什么是位置编码连续有界为什么要有界为什么要连续位置编码的演变用整型值标记位置用[0,1]范围标记位置用二进制向量标记位置用周期函数(sin)来表示位置sin函数周期振幅,相移,垂直位移频率波长sin表示位置用sin和cos交替来表示位置线形变换——旋转sin和cos交替表示位置Transformer中位置编码方法Transformer 位置编码定义Transformer位置编码可视化什么是位置编码在transformer的encoder和decoder的输入层中,使用了Positional E
原创
发布博客 2024.04.29 ·
3369 阅读 ·
33 点赞 ·
0 评论 ·
53 收藏

Transformer模型详解01-Word Embedding

Transformer由论文《Attention is All You Need》提出,现在是谷歌云TPU推荐的参考模型。论文相关的Tensorflow的代码可以从GitHub获取,其作为Tensor2Tensor包的一部分。哈佛的NLP团队也实现了一个基于PyTorch的版本,并注释该论文。在本文中,我们将试图把模型简化一点,并逐一介绍里面的核心概念,希望让普通读者也能轻易理解。
原创
发布博客 2024.04.26 ·
1653 阅读 ·
31 点赞 ·
0 评论 ·
38 收藏

深度学习07-深度卷积生成对抗网络(DCGAN)

GAN(Generative Adversarial Network)是一种生成模型,由两个神经网络组成:生成器(Generator)和判别器(Discriminator)。GAN的基本思想是通过让生成器和判别器相互对抗来学习生成真实样本的能力。生成器的作用是将一个随机噪声向量作为输入,通过一系列的神经网络层逐渐将其转化为一个与真实样本相似的输出。生成器的目标是尽量使生成的样本被判别器误认为是真实样本,从而欺骗判别器。生成器的训练目标是最小化生成样本与真实样本之间的差异。
原创
发布博客 2023.07.11 ·
4593 阅读 ·
6 点赞 ·
2 评论 ·
37 收藏

深度学习06-pytorch从入门到精通

构建5*3数组,只是分配了空间未初始化#这里产生个0-1之间的tensor张量,并且初始化print(x1)自己创建的数据集没有做任何维度的转换。for input,label in dsLoader: #四条数据分成了2批,循环两次。
原创
发布博客 2023.07.06 ·
7598 阅读 ·
15 点赞 ·
1 评论 ·
121 收藏

深度学习05-RNN循环神经网络

循环神经网络(Recurrent Neural Network,RNN)是一种具有循环连接的神经网络结构,被广泛应用于自然语言处理、语音识别、时序数据分析等任务中。相较于传统神经网络,RNN的主要特点在于它可以处理序列数据,能够捕捉到序列中的时序信息。RNN的基本单元是一个循环单元(Recurrent Unit),它接收一个输入和一个来自上一个时间步的隐藏状态,并输出当前时间步的隐藏状态。在传统的RNN中,循环单元通常使用tanh或ReLU等激活函数。
原创
发布博客 2023.06.26 ·
18898 阅读 ·
77 点赞 ·
1 评论 ·
485 收藏

图像处理实战02-yolov5目标检测

以下模型列的解释列名解释Model模型的名称输入图像的大小(以像素为单位)在验证集上的平均精确度(mean Average Precision),考虑所有IOU阈值从0.5到0.95的情况,准确率是%mAPval0.5在验证集上的平均精确度,只考虑IOU阈值为0.5的情况在CPU上使用batch size为1时的推理速度(以毫秒为单位)在NVIDIA V100 GPU上使用batch size为1时的推理速度(以毫秒为单位)
原创
发布博客 2023.06.15 ·
19704 阅读 ·
9 点赞 ·
0 评论 ·
136 收藏

图像处理实战01-OpenCV 入门指南

OpenCV是一个强大的计算机视觉库,它可以用于处理图像和视频数据,以及进行目标检测和跟踪等任务。,将学会如何使用Python编写OpenCV代码来进行基础和进阶的图像处理和分析。学习OpenCV可以帮助你掌握基本的图像处理技术,包括图像读取和处理、阈值处理、形态学函数、模板匹配、滤波器、图形处理、视频处理和人脸检测等方面的内容。这些技术都是计算机视觉和图像处理领域的基本内容,也是卷积神经网络的基础。通过学习OpenCV,你可以更好地理解卷积神经网络的工作原理和应用。
原创
发布博客 2023.06.14 ·
8422 阅读 ·
38 点赞 ·
4 评论 ·
247 收藏

深度学习04-CNN经典模型

卷积神经网络(CNN)是深度学习中非常重要的一种网络结构,它可以处理图像、文本、语音等各种类型的数据。以下是CNN的前4个经典模型LeNet-5是由Yann LeCun等人于1998年提出的,是第一个成功应用于手写数字识别的卷积神经网络。它由7层神经网络组成,包括2层卷积层、2层池化层和3层全连接层。其中,卷积层提取图像特征,池化层降低特征图的维度,全连接层将特征映射到对应的类别上。LeNet-5的主要特点是使用Sigmoid激活函数、平均池化和卷积层后没有使用零填充。
原创
发布博客 2023.05.16 ·
9193 阅读 ·
6 点赞 ·
2 评论 ·
88 收藏

深度学习03-卷积神经网络(CNN)

CNN,即卷积神经网络(Convolutional Neural Network),是一种常用于图像和视频处理的深度学习模型。与传统神经网络相比,CNN 有着更好的处理图像和序列数据的能力,因为它能够自动学习图像中的特征,并提取出最有用的信息。CNN 的一个核心特点是卷积操作,它可以在图像上进行滑动窗口的计算,通过滤波器(又称卷积核)和池化层(Max Pooling)来提取出图像的特征。卷积操作可以有效地减少权重数量,降低计算量,同时也能够保留图像的空间结构信息。
原创
发布博客 2023.05.12 ·
37556 阅读 ·
88 点赞 ·
3 评论 ·
705 收藏

深度学习02-神经网络(MLP多层感知器)

神经网络是一种基于生物神经系统结构和功能特点而设计的人工神经网络模型,具有很强的自适应性和非线性映射能力。神经网络由多个神经元(或称节点)组成,这些神经元通过连接权重相互连接,构成多层的网络结构。每个神经元接收到来自其它神经元的信号,并将这些信号加权线性组合后通过激活函数进行非线性转换,最终输出给下一层神经元或输出层。学习机器学习后,学习神经网络可以帮助你更深入地理解模式识别和人工智能领域的基础知识。神经网络在很多领域都有广泛的应用,例如计算机视觉、自然语言处理、语音识别等。
原创
发布博客 2023.05.09 ·
68202 阅读 ·
195 点赞 ·
7 评论 ·
1201 收藏

深度学习01-tensorflow开发环境搭建

TensorFlow是一种端到端开源机器学习平台,它提供了一个全面而灵活的生态系统,包含各种工具、库和社区资源,能够助力研究人员推动先进机器学习技术的发展。在TensorFlow机器学习框架下,开发者能够轻松地构建和部署由机器学习提供支持的应用。[2]Keras是一个高层次神经网络 API,适用于快速构建原型、高级研究和生产。它作为TensorFlow的一个接口,可以兼容多种深度学习框架。Keras 的核心数据结构是 model,一种组织网络层的方式。
原创
发布博客 2023.05.08 ·
3599 阅读 ·
7 点赞 ·
0 评论 ·
41 收藏
加载更多