GAN生成对抗网络pytorch实现

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
生成对抗网络GAN)是一种深度学习模型,其目的是生成与真实数据相似的合成数据。PyTorch是一个非常受欢迎的深度学习框架,它提供了方便易用的API来实现GAN。 以下是使用PyTorch实现GAN的基本步骤: 1. 定义生成器(Generator)和判别器(Discriminator)的架构,可以使用卷积神经网络(CNN)或全连接神经网络(FCN)。 2. 定义损失函数。GAN使用对抗损失函数(Adversarial Loss)来最小化生成器和判别器之间的差异。可以使用二元交叉熵(Binary Cross Entropy)损失函数来计算判别器和生成器的损失。 3. 训练GAN。在训练期间,生成器和判别器交替进行更新,以使生成器生成更逼真的样本,并使判别器更准确地区分生成的样本和真实样本之间的差异。 下面是一个简单的PyTorch实现GAN的示例代码: ``` import torch import torch.nn as nn import torch.optim as optim import torchvision.datasets as datasets import torchvision.transforms as transforms from torch.utils.data import DataLoader # 定义生成器和判别器的架构 class Generator(nn.Module): def __init__(self): super(Generator, self).__init__() self.fc1 = nn.Linear(100, 256) self.fc2 = nn.Linear(256, 784) self.relu = nn.ReLU() self.tanh = nn.Tanh() def forward(self, x): x = self.fc1(x) x = self.relu(x) x = self.fc2(x) x = self.tanh(x) return x class Discriminator(nn.Module): def __init__(self): super(Discriminator, self).__init__() self.fc1 = nn.Linear(784, 256) self.fc2 = nn.Linear(256, 1) self.sigmoid = nn.Sigmoid() def forward(self, x): x = self.fc1(x) x = self.relu(x) x = self.fc2(x) x = self.sigmoid(x) return x # 定义损失函数和优化器 criterion = nn.BCELoss() generator_optimizer = optim.Adam(generator.parameters(), lr=0.001) discriminator_optimizer = optim.Adam(discriminator.parameters(), lr=0.001) # 训练GAN for epoch in range(num_epochs): for i, (real_images, _) in enumerate(data_loader): batch_size = real_images.size(0) real_labels = torch.ones(batch_size, 1) fake_labels = torch.zeros(batch_size, 1) # 训练判别器 discriminator_optimizer.zero_grad() real_output = discriminator(real_images.view(batch_size, -1)) real_loss = criterion(real_output, real_labels) z = torch.randn(batch_size, 100) fake_images = generator(z) fake_output = discriminator(fake_images.detach()) fake_loss = criterion(fake_output, fake_labels) discriminator_loss = real_loss + fake_loss discriminator_loss.backward() discriminator_optimizer.step() # 训练生成器 generator_optimizer.zero_grad() z = torch.randn(batch_size, 100) fake_images = generator(z) fake_output = discriminator(fake_images) generator_loss = criterion(fake_output, real_labels) generator_loss.backward() generator_optimizer.step() ``` 在上面的代码中,我们首先定义了Generator和Discriminator的架构。Generator接收一个随机噪声向量作为输入,并生成一个大小为28x28的图像。Discriminator接收一个大小为28x28的图像作为输入,并输出一个0到1之间的概率值,表示输入图像是真实的还是生成的。 接下来,我们定义了损失函数和优化器。在训练期间,我们使用二元交叉熵损失函数来计算判别器和生成器的损失,并使用Adam优化器来更新模型参数。 最后,我们在数据集上迭代多个epoch,每次迭代都训练判别器和生成器。在每个epoch中,我们首先训练判别器,然后训练生成器,以最小化判别器和生成器之间的差异。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Handsome coder

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值