Hive使用手册

本文介绍了Hive的三种用户接口:命令行(CLI)、客户端(Client)和Web界面(WUI),并详细讲解了Hive命令行的三种使用方式,包括通过-hivevar传递参数、直接执行SQL语句和交互式模式。此外,还展示了Hive创建数据库、表以及数据加载、查询等操作,以及聚合函数如concat和group_concat的使用方法。
摘要由CSDN通过智能技术生成

Hive 用户接口主要有三个:

命令行(CLI)---最常用,启动的时候,会同时启动一个 Hive 服务。

客户端(Client) ---Client 是 Hive 的客户端,用户连接至 Hive Server。在启动 Client 模式的时候,需要指出 Hive Server 所在节点,并且在该节点启动 Hive Server。

Web界面(WUI)---WUI 是通过浏览器访问 Hive的Web工具

【Hive】命令------hive命令的3种调用方式 

方式1:hive –f  /root/shell/hive-script.sql(适合多语句)

 hive-script.sql类似于script一样,直接写查询命令就行,不进入交互模式,执行一个hive script 

这里可以和静音模式-S联合使用,通过第三方程序调用,第三方程序通过hive的标准输出获取结果集。

 $HIVE_HOME/bin/hive -S -f /home/my/hive-script.sql (不会显示mapreduct的操作过程)

那么问题来了:如何传递参数呢?

demo如下:

start_hql.sh  内容:

#!/bin/bash
# -S 打印输出mapreduce日志
hive \
  -hivevar id=1  \
  -hivevar col2=2  \
  -S -f test.sql

test.sql 内容:
use tmp; 
select * from tmp_jzl_20140725_test11 where id='${hivevar:id}' and col2='${hivevar:col2}';

 

#!/bin/bash

source ~/.bash_profile

cd /home/ml/rwdPredict

yesterday=`date -d yesterday "+%Y-%m-%d"`

echo $yesterday"===start"
echo "batch sql start"
#          hive -hiveconf v_begin_date=2019-07-25 -hiveconf v_end_date=2019-07-28 -f ml_risk_.sql
#echo "hive -hiveconf v_begin_date=$yesterday -hiveconf v_end_date=$yesterday -f ml_risk.sql"
             hive                                                                                                                  -f ml_rwd.sql
echo "batch sql end"

echo "rwdPredict model start"
python3 rwdPredict.py
echo "rwdPredict model end"
echo $yesterday"===end"
 

方式2:hive -e  'sql语句'(适合短语句)

直接执行sql语句 

例如:
[root@cloud4 shell]# hive -e 'select * from t1'
静音模式:

[root@cloud4 shell]# hive -S -e 'select * from t1'  (用法与第一种方式的静音模式一样,不会显示mapreduce的操作过程)
此处还有一亮点,用于导出数据到linux本地目录下
例如:

[root@cloud4 shell]# hive -e 'select * from t1

1. HIVE结构 Hive 是建立在 Hadoop 上的数据仓库基础构架。它提供了一系列的工具,可以用来进行数 据提取转化加载 (ETL),这是一种可以存储、 查询和分析存储在 Hadoop 中的大规模数据的 机制。 Hive 定义了简单的类 SQL 查询语言,称为 QL,它允许熟悉 SQL 的用户查询数据。 同时,这个语言也允许熟悉 MapReduce 开发者的开发自定义的 mapper 和 reducer 来处理 内建的 mapper 和 reducer 无法完成的复杂的分析工作。 1.1HIVE 架构 Hive 的结构可以分为以下几部分: 用户接口:包括 CLI, Client, WUI 元数据存储。通常是存储在关系数据库如 mysql, derby 中 6 解释器、编译器、优化器、执行器 Hadoop:用 HDFS 进行存储,利用 MapReduce 进行计算 1、 用户接口主要有三个: CLI,Client 和 WUI。其中最常用的是 CLI , Cli 启动的时候, 会同时启动一个 Hive 副本。 Client 是 Hive 的客户端,用户连接至 Hive Server 。 在启动 Client 模式的时候, 需要指出 Hive Server 所在节点,并且在该节点启动 Hive Server 。 WUI 是通过浏览器访问 Hive 。 2、 Hive 将元数据存储在数据库中,如 mysql 、 derby 。 Hive 中的元数据包括表的名字, 表的列和分区及其属性,表的属性(是否为外部表等),表的数据所在目录等。 3、 解释器、编译器、优化器完成 HQL 查询语句从词法分析、语法分析、编译、优化以及 查询计划的生成。生成的查询计划存储在 HDFS 中,并在随后有 MapReduce 调用执行。 4、 Hive 的数据存储在 HDFS 中,大部分的查询由 MapReduce 完成(包含 * 的查询,比 如 select * from tbl 不会生成 MapRedcue 任务)。 1.2Hive 和 Hadoop 关系 Hive 构建在 Hadoop 之上, HQL 中对查询语句的解释、优化、生成查询计划是由 Hive 完成的 所有的数据都是存储在 Hadoop 中 查询计划被转化为 MapReduce 任务,在 Hadoop 中执行(有些查询没有 MR 任 务,如: select * from table ) Hadoop和 Hive 都是用 UTF-8 编码的 7 1.3Hive 和普通关系数据库的异同 Hive RDBMS 查询语言 HQL SQL 数据存储 HDFS Raw Device or Local FS 索引 无 有 执行 MapReduce Excutor 执行延迟 高 低 处理数据规模 大 小 1. 查询语言。由于 SQL 被广泛的应用在数据仓库中,因此,专门针对 Hive 的特性设计 了类 SQL 的查询语言 HQL。熟悉 SQL 开发的开发者可以很方便的使用 Hive 进行开 发。 2. 数据存储位置。 Hive 是建立在 Hadoop 之上的,所有 Hive 的数据都是存储在 HDFS 中 的。而数据库则可以将数据保存在块设备或者本地文件系统中。 3. 数据格式。 Hive 中没有定义专门的数据格式,数据格式可以由用户指定,用户定义数 据格式需要指定三个属性:列分隔符(通常为空格、” t ”、” x001″)、行分隔符 (” n”)以及读取文件数据的方法( Hive 中默认有三个文件格式 TextFile , SequenceFile 以及 RCFile )。由于在加载数据的过程中,不需要从用户数据格式到 Hive 定义的数据格式的转换,因此, Hive 在加载的过程中不会对数据本身进行任何修 改,而只是将数据内容复制或者移动到相应的 HDFS 目录中。而在数据库中,不同的数 据库有不同的存储引擎,定义了自己的数据格式。所有数据都会按照一定的组织存储, 因此,数据库加载数据的过程会比较耗时。 4. 数据更新。由于 Hive 是针对数据仓库应用设计的,而数据仓库的内容是读多写少的。 因此, Hive 中不支持对数据的改写和添加,所有的数据都是在加载的时候中确定好的。 而数据库中的数据通常是需要经常进行修改的,因此可以使用 INSERT INTO ... VALUES 添加数据,使用 UPDATE ... SET 修改数据。 5. 索引。之前已经说过, Hive 在加载数据的过程中不会对数据进行任何处理,甚至不会 对数据进行扫描,因此也没有对数据中的某些 Key 建立索引。 Hive 要访问数据中满足 条件的特定值时,需要暴力扫描整个数据,因此访问延迟较高。由于 MapReduce 的引 入, Hive 可以并行访问数据,因此即使没有索引,对于大数据量的访问, Hive 仍然 可以体现出优势。数据库中,通常会针对一个或者几个列建立索引,因此对于少量的特 定条件的数据的访问,数据库可以有很高的效率,较低的延迟。由于数据的访问延迟较 高,决定了 Hive 不适合在线数据查询。 6. 执行。 Hive 中大多数查询的执行是通过 Hadoop 提供的 MapReduce 来实现的(类似 select * from tbl 的查询不需要 MapReduce)。而数据库通常有自己的执行引擎。
### 回答1: Hive用户手册PDF是一本详细介绍Hive使用方法和相关功能的电子书。Hive是一个基于Hadoop的数据仓库工具,它的官方用户手册提供了全面的指导,帮助用户了解和掌握Hive的各项功能。 用户手册的PDF版本可以让用户更方便地查阅和学习,无论是在电脑上还是在移动设备上都可以方便地阅读。用户手册通常包括Hive的基本概念和架构,安装和配置指南,HiveQL语言的语法和用法,以及各种常用功能和操作的示例。用户手册还可能包括有关优化查询性能、使用UDF(用户自定义函数)以及Hive与其他工具集成的指导。 通过阅读Hive用户手册,用户可以轻松了解Hive的特性和使用方式,从而更好地利用Hive进行数据仓库和数据分析工作。对于那些想要自己搭建和管理Hive集群的人来说,用户手册还提供了一些建议和最佳实践。 总之,Hive用户手册PDF是一本宝贵的资源,它为用户提供了详细的Hive使用指南,并有助于用户更好地使用和理解Hive的各种功能。无论是初学者还是有经验的用户,都可以从中获得帮助,提高工作效率。 ### 回答2: Hive用户手册PDF是指Hive数据库系统的用户手册以PDF格式呈现的文档。Hive是一个基于Hadoop的数据仓库基础设施,用于查询和分析大规模数据集。用户手册是帮助用户学习和使用Hive的重要参考资料。 Hive用户手册PDF通常包含了Hive的安装和配置指南,用户权限管理,Hive查询语言(HiveQL)的详细介绍,Hive表的创建和管理,数据导入和导出等内容。此外,手册还会提供一些高级功能的说明,如分区表、动态分区、存储格式选择和数据压缩等。 用户手册的PDF格式方便用户离线查阅和使用。用户可以通过电脑、平板或手机等设备在没有互联网连接的情况下,轻松地查看和学习Hive的知识。同时,PDF文件还支持搜索功能,使得用户可以更快地找到自己需要的内容。 对于初学者,Hive用户手册PDF是学习和入门Hive的重要工具。通过研读手册,用户可以了解Hive的基本概念、组件和详细使用方法。手册中通常会给出具体的示例和代码,帮助用户理解和掌握Hive的各个方面。 对于有经验的用户,Hive用户手册PDF可以作为查漏补缺的工具。手册中提供了Hive的详细技术文档和API参考,用户可以利用手册解决遇到的问题,深入研究Hive的各个功能。 总之,Hive用户手册PDF是Hive数据库系统的重要文档之一,它提供了全面的指导和参考,帮助用户更好地学习和使用Hive。无论是初学者还是有经验的用户,都可以通过阅读手册来充实自己的Hive知识,并解决实际问题。 ### 回答3: Hive用户手册是一本介绍Hive的操作和使用方法的指南。该手册以PDF格式提供,方便用户下载和查阅。 Hive是一种基于Hadoop的数据仓库和分析工具,可以对大规模的数据进行查询和分析。Hive用户手册提供了详细的Hive查询语言(HiveQL)的语法和用法说明,用户可以根据手册学习如何编写HiveQL查询,并了解Hive的各种特性和功能。 手册的内容包括Hive的安装和配置指南,包括如何在Hadoop集群上安装和配置Hive,以及如何与其他工具和组件(如HDFS、YARN、Hive Thrift Server等)集成使用。 此外,手册还介绍了Hive表的创建和管理方法,包括如何定义表的结构和属性,如何加载数据到表中,以及如何执行表的管理操作(如添加、删除、修改表等)。 手册还提供了Hive查询的优化技巧和性能调优方法,帮助用户提高查询的效率和响应时间。此外,手册还包括了Hive的内置函数和UDF(用户自定义函数)的使用说明,用户可以根据手册学习如何在Hive中使用这些函数来处理和转换数据。 总之,Hive用户手册是一本全面而详细的指南,可以帮助用户快速上手使用Hive,并充分发挥Hive在大数据分析应用中的优势。用户可以通过下载PDF格式的手册,随时随地查阅和学习Hive的相关知识。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值