ComfyUI 基础教程:界面介绍/文生图工作流

本文将介绍 ComfyUI 的主要界面,包括:工作流区域、操作面板、基础操作和快捷键,并详细介绍了文生图工作流的各节点的作用及连接。
文章内容包含大量的图例,希望能够帮助新手同学快速入门。

一、界面介绍

ComfyUI 的界面主要由工作流绘制区域和右侧的操作面板组成。

1.1 工作流区域

工作流绘制区域是 ComfyUI 的主要界面,用于节点的添加、编辑、删除和连接。

一个工作流主要由以下部分组织:

  • 节点(Node):节点是工作流的主要组成部分,它是一个个的矩形块,例如:Load Checkpoint(加载检测点)、CLIP Text Encode(提示词编码器)、KSampler(采样器)、VAE Decode(VAE解码器)、Save Image(保存图片)等。
  • 连线(Edge):连线用于表示连接节点的输入和输出的线。
  • 输入(Input):输入为节点左侧的文本和点,是连接的输入端。
  • 输出(Output):输出为节点右侧的文本和点,是连接的输出端。
  • 参数(Parameter):参数用于设置节点中的字段,例如:ckpt_name(模型名称)、prompt(提示词)、seed(随机种子)等。

下图标记了一部分说明:
image.png

1.2 操作面板

操作面板用于工作流的执行、保存、清空、加载、设置等操作。

image.png
操作面板各按钮功能介绍:

  • Queue Prompt(提示词队列):当我们配置好工作流后,可以点击此按钮来加入队列并执行。
  • Queue size(队列大小):下面执行+待执行的队列数。
  • Extra options(扩展选项):用于设置批次数量和自动执行选项。
  • Queue Front(执行队列):用于执行队列生成图片。
  • View Queue(显示队列):显示当前队列情况。
  • View History(显示历史):用于显示生成的图片历史。
  • Save(保存):可以将当前工作流保存至磁盘,文件为 JSON 类型。
  • Load(加载):可以加载磁盘上的工作流。
  • Clear(清空):清空当前工作流。
  • Load Default(加载默认):加载默认工作流,即文生图工作流。

点击右上角的”齿轮“按钮,可以打开设置界面:
image.png
设置界面主要用于设置调解板、查看日志、网格大小等信息。

1.3 基础操作

还有一些基础操作,可以帮助我们更好的使用 ComfyUI。

  • 在控制处按住鼠标左键,可以拖动整个画布。
  • 在节点上按住鼠标左键,可以拖动节点。
  • 使用鼠标滚轴可以放大和缩小画布。
  • 按住输入或输出的点进行拖拽,可以连接两个节点。只能连接相同类型的输入和输出。

下面列出了一些常用的快捷键:

快捷键说明
Ctrl + Enter将当前工作流排到队列尾部生成
Ctrl + Shift + Enter将当前工作流排到队列首部生成。
Ctrl + Z/Ctrl + Y撤销/重做
Ctrl + S保存工作流
Ctrl + O加载工作流
Ctrl + A全选所有节点
Alt + C折叠/展开选定节点
Ctrl + M关闭/开启选定节点
Ctrl + B绕过选定的节点(就像从图中删除节点并重新连线一样)
Delete/Backspace删除选定节点
Ctrl + Backspace删除当前工作流
Space按住并移动光标时移动画布
Ctrl/Shift + 单击多选节点
Ctrl + C/Ctrl + V复制/粘贴选定的节点(不保持与未选定节点输出的连接)
Ctrl + C/Ctrl + Shift + V复制/粘贴选定的节点(保持与未选定节点输出的连接)
Shift + 拖动同时移动多个选定节点
Ctrl + D加载默认工作流
Alt + +画面放大
Alt + -画面缩小
Ctrl + Shift + LMB + Vertical drag画面放大/缩小
Q切换队列的可见性
H切换历史记录的可见性
R刷新工作流
双击 LMB打开节点快速搜索面板

二、文生图工作流

学习 ComfyUI 的最好的方式就是通过示例。因此,本节将学习 ComfyUI 的文生图工作流,了解每个节点的作用,以及它们该如何连接。

image.png

2.1 Load Checkpoint(加载模型)

【Load Checkpoint】节点用于选择大模型。点击【ckpt_name】可以显示可用的模型列表。

image.png
大模型列表:
image.png
如果点击【ckpt_name】没有任何反应,你可能没有安装模型或者未配置 Stable Diffusion WebUI 的地址,可以在《ComfyUI 本地部署指南》中进行操作。
【Load Checkpoint】节点有三个输出部分:

  • model(模型):潜在空间中的噪声预测模型。连接到采样器,在这里完成逆向扩散过程。
  • CLIP:语言模型对正向提示词和负责提示词进行预处理。连接到提示词,因为提示词需要经过 CLIP 模型处理后才有用。
  • VAE:VAE(Variational AutoEncoder,变分自动编码器)在像素和潜在空间之间转换图像。连接 VAE 解码器,将图像从潜在空间转换为像素空间。

2.2 CLIP Text Encode(CLIP 文本编码)

【CLIP Text Encode】节点用于输入正向提示词和负向提示词。该节点获取提示词并将输入到 CLIP 语言模型中。CLIP 是 OpenAI 的语言模型,将提示词中的每个单词转换为 embeddings

image.png
【CLIP Text Encode】节点的输入部分连接【Load Checkpoint】节点;输出部分连接【KSampler】的【positive】或【negative】。

2.3 Empty Latent Image(潜在空间图像)

【Empty Latent Image】节点可以设置潜在空间图像的像素大小和批次大小。文本到图像的过程从潜在空间中的随机图像开始。潜在空间图像的大小和像素空间中的实际图像成正比。因此,如果想改变图像的大小,就要改变潜在空间图像大小。

image.png
【Empty Latent Image】节点只有一个输出项,用于连接【KSample】节点的【latent_image】。

2.4 KSample(采样器)

【KSample】节点是 Stable Diffusion 中图像生成的核心。采样器将随机图像进行逐步降噪,来生成与提示词相匹配的图像。

image.png
【KSample】节点主要有以下参数:

  • seed(随机种子):随机种子值控制清晰图像的初始噪声,从而控制最终图像的组成。
  • control_after_generate(生成后操作):表示每次生成图片后,随机种子将如何变化。
    • fixed(固定):保持种子不变;
    • increment(增量):增加 1
    • decrement(减量):减少 1
    • randomize(随机):随机值。
  • steps(采样步数):采样步骤数。更多内容参见《采样器和采样步数》。
  • cfg(提示词相关性):CFG(Classifier Free Guidance)表示为无分类器信息引导规模。CFG 是控制稳定扩散应遵循文本提示的紧密程度的设置,即提示词相关性。更多内容参见《生成参数》。
  • sampler_name(采样器名称):用于选择采样器。更多内容参见《采样器和采样步数》。
  • scheduler(调度程序):控制噪声水平在每个步骤中如何变化。
  • denoise(降噪):降噪过程应消除多少百分比的初始噪声。1 表示全部。

2.5 VAE Decode(VAE 解码)

【VAE Decode】节点使用提供的 VAE 将潜在空间图像解码回到像素空间图像。

image.png
【VAE Decode】节点有两个输入项,【samples】连接要解码的潜在图像的采样器,vae 连接解码清晰图像的 VAE;还有一个输出项,【IMAGE】解码后的图像。

2.6 Save Image(保存图片)

【Save Image】节点用于保存图像,即将生成的图像保存到磁盘中。

image.png
【filename_prefix】参数为文件名的前缀。
点击【Queue Prompt】后,会生成图片:
image.png
图片会被保存到 ComfyUI\output 目录中。

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

为了帮助大家更好地掌握 ComfyUI,我在去年花了几个月的时间,撰写并录制了一套ComfyUI的基础教程,共六篇。这套教程详细介绍了选择ComfyUI的理由、其优缺点、下载安装方法、模型与插件的安装、工作流节点和底层逻辑详解、遮罩修改重绘/Inpenting模块以及SDXL工作流手把手搭建。

需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

一、ComfyUI配置指南

  • 报错指南
  • 环境配置
  • 脚本更新
  • 后记

二、ComfyUI基础入门

  • 软件安装篇
  • 插件安装篇

三、 ComfyUI工作流节点/底层逻辑详解

  • ComfyUI 基础概念理解
  • Stable diffusion 工作原理
  • 工作流底层逻辑
  • 必备插件补全

四、ComfyUI节点技巧进阶/多模型串联

  • 节点进阶详解
  • 提词技巧精通
  • 多模型节点串联

在这里插入图片描述

五、ComfyUI遮罩修改重绘/Inpenting模块详解

  • 图像分辨率
  • 姿势

在这里插入图片描述

六、ComfyUI超实用SDXL工作流手把手搭建

  • Refined模型
  • SDXL风格化提示词
  • SDXL工作流搭建

在这里插入图片描述

在这里插入图片描述

这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

### ComfyUI 中复杂文本生成像的工作流ComfyUI 中,复杂的文本生成工作流可以通过精心设计的节点连接来实现。这种工作流允许用户将自然语言描述转换成高质量的艺术作品或特定场景的片。 #### 构建基础框架 为了创建一个有效的文本转像管道,首先需要定义输入文本并将其传递给合适的处理模块。通常情况下,这涉及到以下几个核心组件: - **Text Encoder (CLIP)**:负责编码用户的提示词为向量表示形式[^1]。 ```python text_encoder_node = { "class_type": "CLIPTextEncode", "inputs": {"text": "A beautiful sunset over the mountains"} } ``` #### 添加样式控制 为了让生成的结果更加贴近预期效果,在基本结构之上还可以加入风格化调整机制。比如利用预训练好的 StyleGAN 或其他相似架构来进行微调操作,从而影响最终输出的画面质感。 - **Style Modifier Node**:用于引入额外的艺术风格指导信息[^2]。 ```json { "class_type": "style_modifier", "inputs": { "base_image": "<output_of_previous_step>", "style_reference": "path/to/style/image.jpg" } } ``` #### 调整细节参数 除了宏观层面的设计外,对于一些具体的视觉属性也可以做进一步优化设置。例如分辨率大小、色彩饱和度等都可以作为可调节项纳入整个流水线之中。 - **Parameter Tuner Block**:提供灵活配置选项以满足不同应用场景下的需求差异。 ```yaml parameter_tuner_block: width: 1024 height: 768 color_saturation_boost: true ``` #### 执行与监控进度 最后一步就是启动执行过程,并实时跟踪任务状态直至完成。ComfyUI 提供了良好的可视化反馈支持,使得开发者能够轻松掌握当前进展状况以及可能遇到的问题所在。 - **Progress Monitor Widget**:帮助观察计算过程中间产物的变化趋势。 ```mermaid graph TD; A[Start Process] --> B{Is Task Running?}; B -- Yes --> C(Show Intermediate Results); B -- No --> D(Task Finished); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值