图形跟班

从零开始学图形(2016.11)

Metropolis Hastings MCMC when the proposal and target have differing support

参考: Metropolis Hastings MCMC when the proposal and target have differing support Examples of errors in MCMC algorithms 关于标准化常数(the normalising consta...

2019-01-12 17:25:21

阅读数 24

评论数 0

关于Metropolis-Hasting采样的两个注意事项

关于Metropolis-Hasting采样的两个注意事项(如下方截图中的红线红线标注): 1,和“拒绝采样”不同,在M-H采样过程,对新的proposal的采样点,是以a概率接受proposal的采样点作为新的采样点,以(1-a)的概率拒绝proposal的采样点(把上一次的采样点复制过来作为新...

2018-12-04 21:13:57

阅读数 46

评论数 0

反函数的求导法则

文章转自:https://blog.csdn.net/baishuiniyaonulia/article/details/79052350 版权归原作者! 反函数的导数等于直接函数导数的倒数

2018-09-27 10:27:34

阅读数 306

评论数 0

图形学相关的一些数学知识(链接)

协方差: 如何通俗易懂地解释「协方差」与「相关系数」的概念? 协方差矩阵: [转]浅谈协方差矩阵 MCMC: 马尔可夫链蒙特卡罗算法(MCMC)

2018-09-14 21:40:45

阅读数 202

评论数 0

方差、标准差(均方差),均方误差、均方根误差

方差(Variance)、标准差(均方差,Standard Deviation),均方误差(MSE)、均方根误差(RMSE) 其中,标准差是方差的平方根,均方根误差是均方误差的平方根 所以,这四个概念的区别可以简化为方差(Variance)和均方误差(MSE)的区别: 方差(Variance...

2018-09-09 11:54:03

阅读数 230

评论数 0

[PBRT-V3]从MCMC的角度分析MLT

关于MLT,之前有过一篇博文:Q139:PBRT-V3,Metropolis Light Transport (MLT)(16.4章节) 为了更好地理解MLT,小编决定从MCMC的角度对该渲染算法分析一下。 关于MCMC,主要参考如下(感谢Eureka和刘建平Pinard写了这些文章)。 E...

2018-08-20 20:20:21

阅读数 121

评论数 0

拒绝采样(reject sampling)原理详解

文章转自:https://blog.csdn.net/jteng/article/details/54344766 版权归原作者!   蒙特·卡罗方法(Monte Carlo method)也称统计模拟方法,通过重复随机采样模拟对象的概率与统计的问题,在物理、化学、经济学和信息技术领域均具...

2018-08-19 21:34:38

阅读数 228

评论数 1

流形(维基中文版)

文章转自:流形 版权归原作者!

2018-08-10 19:43:48

阅读数 164

评论数 0

对“流形”最好的讲解在维基

这两天在看有关“流形”的东西。 在网上能够找到的相关资料不要太多。 其中,大部分(几乎所有)资料的目标似乎是让初学者放弃学习。 对比了各种来源的相关资料之后,小编发现: 对“流形”最好的讲解在维基 突然感慨,墙掉“中文维基”是有道理: 一方面是为了墙掉不和谐的声音; 另一方面,也给墙...

2018-08-10 19:15:57

阅读数 153

评论数 0

流形学习

文章转自:https://blog.csdn.net/yaphat/article/details/52421490 版权归原作者! 概念 流形学习方法(manifold learning),简称流形学习.它是假设数据是均匀采样于一个高维欧氏空间中的低维流形,流形学习就是从高维采样数...

2018-08-10 12:59:43

阅读数 85

评论数 0

如何通俗易懂地解释卷积?(2)

文章转自:https://www.zhihu.com/question/22298352 版权归原作者。 不推荐用“反转/翻转/反褶/对称”等解释卷积。好好的信号为什么要翻转?导致学生难以理解卷积的物理意义。 这个其实非常简单的概念,国内的大多数教材却没有讲透。 直接看图,不信看不懂。...

2018-07-05 20:46:10

阅读数 118

评论数 0

Star-shaped polygon

this article is from: https://en.wikipedia.org/wiki/Star-shaped_polygon all copyrights belong to the original author. A star-shaped polygon (top)...

2017-10-16 15:16:59

阅读数 140

评论数 0

如何通俗易懂地解释卷积?

文章大部分转自:https://www.zhihu.com/question/22298352?rf=21686447 相应版权归原作者!笔者的理解:“卷积”就是“加权求和”“信号与响应的卷积”体现的是:时间上的“加权求和”; “图像平滑处理的卷积”体现的是:空间上的“加权求和”。(后文内容为...

2017-10-11 22:27:56

阅读数 3613

评论数 0

Q145: 三次曲线对比及其矩阵表示(Bezier, B-Spline, Hermite, Catmull-Rom)

三次曲线(Bezier, B-Spline, Hermite, Catmul-Rom)“图形”及“控制点”对比“矩阵表示”对比

2017-10-10 12:01:42

阅读数 873

评论数 0

Hermite (埃尔米特)曲线

文章转自:http://www.cnblogs.com/jqm304775992/p/5044728.html 版权归原作者!小编觉得这篇Hermite曲线的讲解比较好懂!赞一个!Hermite 曲线  已知曲线的两个端点坐标P0、P1,和端点处的切线R0、R1,确定的一条曲线。参数方程  1....

2017-10-10 09:54:06

阅读数 1584

评论数 0

《微积分》框架逻辑的简单理解

微积分包含三部分内容:1,函数的微分、积分、微分方程。 2,简化函数:级数展开。 3,扩展函数:向量场。

2017-09-30 15:40:15

阅读数 636

评论数 0

级数的作用

文章转自:http://ycool.com/post/3uycjfx 版权归原作者!1.级数理论的意义部分。级数是研究函数的重要工具,级数是产生新函数的重要方法,同时又是对已知函数表示、逼近的有效方法,在近似计算中发挥着重要作用。我们在建立定积分概念的同时,引入变上限积分定义出了一类新函数,使我...

2017-09-23 09:03:54

阅读数 2009

评论数 0

如何直观形象地理解梯度、散度、旋度

文章转自:https://zhuanlan.zhihu.com/p/25285580 版权归原作者!梯度: 运算的对像是纯量,运算出来的结果会是向量。在一个纯量场中,梯度的计算结果会是”在每个位置都算出一个向量,而这个向量的方向会是在任何一点上从其周围(极接近的周围,学过微积分该知道甚么叫极限吧...

2017-09-22 08:51:10

阅读数 2063

评论数 0

随机模拟的基本思想和常用采样方法(sampling)

文章转自:http://blog.csdn.net/xianlingmao/article/details/7768833 版权归原作者!通常,我们会遇到很多问题无法用分析的方法来求得精确解,例如由于式子特别,真的解不出来;一般遇到这种情况,人们经常会采用一些方法去得到近似解(越逼近精确解越好,...

2017-08-25 10:14:16

阅读数 255

评论数 0

标准正态分布的积分怎么求?

标准正态分布的积分求解如下: x=rcosθ y=rsinθ 是二重积分极坐标代换 而dxdy,rdrdθ是积分分别在直角坐标系和极坐标系的面积元素 当重积分从直角坐标向极坐标转换的时候要乘上一个雅克比行列式的绝对值

2017-08-24 16:29:07

阅读数 28129

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭