图形跟班

从零开始学图形(2016.11)

Star-shaped polygon

this article is from: https://en.wikipedia.org/wiki/Star-shaped_polygon all copyrights belong to the original author. A star-shaped polygon (top)...

2017-10-16 15:16:59

阅读数:116

评论数:0

如何通俗易懂地解释卷积?

文章大部分转自:https://www.zhihu.com/question/22298352?rf=21686447 相应版权归原作者!笔者的理解:“卷积”就是“加权求和”“信号与响应的卷积”体现的是:时间上的“加权求和”; “图像平滑处理的卷积”体现的是:空间上的“加权求和”。(后文内容为...

2017-10-11 22:27:56

阅读数:319

评论数:0

Q145: 三次曲线对比及其矩阵表示(Bezier, B-Spline, Hermite, Catmull-Rom)

三次曲线(Bezier, B-Spline, Hermite, Catmul-Rom)“图形”及“控制点”对比“矩阵表示”对比

2017-10-10 12:01:42

阅读数:446

评论数:0

Hermite (埃尔米特)曲线

文章转自:http://www.cnblogs.com/jqm304775992/p/5044728.html 版权归原作者!小编觉得这篇Hermite曲线的讲解比较好懂!赞一个!Hermite 曲线  已知曲线的两个端点坐标P0、P1,和端点处的切线R0、R1,确定的一条曲线。参数方程  1....

2017-10-10 09:54:06

阅读数:540

评论数:0

《微积分》框架逻辑的简单理解

微积分包含三部分内容:1,函数的微分、积分、微分方程。 2,简化函数:级数展开。 3,扩展函数:向量场。

2017-09-30 15:40:15

阅读数:267

评论数:0

级数的作用

文章转自:http://ycool.com/post/3uycjfx 版权归原作者!1.级数理论的意义部分。级数是研究函数的重要工具,级数是产生新函数的重要方法,同时又是对已知函数表示、逼近的有效方法,在近似计算中发挥着重要作用。我们在建立定积分概念的同时,引入变上限积分定义出了一类新函数,使我...

2017-09-23 09:03:54

阅读数:780

评论数:0

如何直观形象地理解梯度、散度、旋度

文章转自:https://zhuanlan.zhihu.com/p/25285580 版权归原作者!梯度: 运算的对像是纯量,运算出来的结果会是向量。在一个纯量场中,梯度的计算结果会是”在每个位置都算出一个向量,而这个向量的方向会是在任何一点上从其周围(极接近的周围,学过微积分该知道甚么叫极限吧...

2017-09-22 08:51:10

阅读数:533

评论数:0

随机模拟的基本思想和常用采样方法(sampling)

文章转自:http://blog.csdn.net/xianlingmao/article/details/7768833 版权归原作者!通常,我们会遇到很多问题无法用分析的方法来求得精确解,例如由于式子特别,真的解不出来;一般遇到这种情况,人们经常会采用一些方法去得到近似解(越逼近精确解越好,...

2017-08-25 10:14:16

阅读数:223

评论数:0

标准正态分布的积分怎么求?

标准正态分布的积分求解如下: x=rcosθ y=rsinθ 是二重积分极坐标代换 而dxdy,rdrdθ是积分分别在直角坐标系和极坐标系的面积元素 当重积分从直角坐标向极坐标转换的时候要乘上一个雅克比行列式的绝对值

2017-08-24 16:29:07

阅读数:10955

评论数:0

Q122:PBRT-V3,提高Monte Carlo积分计算效率的方法——Russian Roulette和Splitting(13.7章节)

提高Monte Carlo积分计算效率的本质: 减少那些对结果贡献小的采样点的数目!特别声明:“提高效率”的前提是不能影响计算结果的精确度。一、Russian Roulette以“路径形式的光传播方程”为例来进行说明。 方程截图如下: 这个结果是由“无数条长度分别为1、2、3、……的路径...

2017-07-13 16:36:28

阅读数:495

评论数:0

零阶矩、一阶矩、二阶矩、三阶矩

参考:Moment (mathematics) - Wikipedia此处截取其中的一段:In mathematics, a moment is a specific quantitative measure, used in both mechanics and statistics, ...

2017-07-09 19:26:38

阅读数:8593

评论数:1

联合概率、边际概率、条件概率

一时忘了联合概率、边际概率、条件概率是怎么回事,回头看看。某离散分布:联合概率、边际概率、条件概率的关系: 其中, Pr(X=x, Y=y)为“XY的联合概率”; Pr(X=x)为“X的边际概率”; Pr(X=x | Y=y)为“X基于Y的条件概率”; Pr(Y=y)为“Y的边际概率”;...

2017-07-07 09:19:04

阅读数:9068

评论数:0

问题六十五:二叉查找树的一个应用实例——求解一元十次方程时单实根区间的划分

65.1 概述 回忆一下: “问题五十九:怎么求一元六次方程在区间内的所有不相等的实根”和“问题六十二:怎么求一元十次方程在区间内的所有不相等的实根”中求一元六次方程和一元十次方程的实根时,我们需要将求根区间划分成若干个单根子区间,然后再用牛顿迭代法求出方程在子区间的该单实根。 关于“划分单...

2017-02-04 19:53:49

阅读数:318

评论数:0

问题六十二:怎么求一元十次方程在区间内的所有不相等的实根(2)——修正“区间端点零值”问题

前续“问题六十二:怎么求一元十次方程在区间内的所有不相等的实根”和“问题五十九:怎么求一元六次方程在区间内的所有不相等的实根(3)——修正一个问题” 不管是求解一元六次方程还是一元十次方程,都存在这样一个区间端值问题: 当区间端值为0时,在求该区间上不等实根总个数时出错。 下...

2017-01-23 10:37:32

阅读数:319

评论数:1

问题六十二:怎么求一元十次方程在区间内的所有不相等的实根

在“问题五十九”中解一元六次方程时,就有提到,对应的方法可以推广到更高次多项式方程。 现在,由于要用ray tracing画sphere sweeping图形,若对应的曲线是3次b-spline曲线,则需要解一元十次方程(10=2*(2*3-1))。 我们接下来就看看一元十次方程怎么解?  ...

2017-01-20 17:15:24

阅读数:512

评论数:1

问题六十一:三次b样条(b-spline)曲线的控制点和曲线形状的对应——以回旋体的“基本曲线”为例

“问题六十:怎么用ray tracing画回旋体(rotational sweeping / revolution)”中的“基本曲线”是由三次b-spline曲线段拼接而成。 在这一章节,我们以其中一段曲线段为例,改变其对应的控制点,看看曲线段形状的改变,同时也看看对应的回旋体图形的改变。 ...

2017-01-19 20:48:56

阅读数:621

评论数:0

问题五十九:怎么求一元六次方程在区间内的所有不相等的实根(2)

59.2 求一元六次方程在区间内的所有不相等的实根 59.2.1 理论分析 在“59.1”中,我们已经求得一元六次方程在区间内不相等的实根的总个数。接下来,我们将具体求出方程在区间内的所有不相等的实根。   分两步进行:   第一步:将区间分成若干个只包含一个不相等实根的子区间。 1...

2017-01-18 23:23:28

阅读数:220

评论数:1

问题五十九:怎么求一元六次方程在区间内的所有不相等的实根(1)

为什么要求一元六次方程在某区间的所有根? 原因是: 后面在用ray tracing画回旋体(rotational sweeping/ revolution)时,若侧面曲线是三次b样条曲线,求光线和回旋体的交点时会出现一元六次方程,而且我们要求的是离光线起点最近的交点,所有,我们需要先求出所有交...

2017-01-18 22:03:31

阅读数:265

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭