想成为牛人吗,进来看看这些文章!

阅读更多

英语牛的进来看看

11-13

大家有闲工夫帮忙翻译一下,高分相送(200分)!那些翻译软件实在是难堪!我的英文更加难堪!rnData Warehousing: Back to BasicsrnCareful planning can make your data warehouse a success rnSo, you're about to undertake your first data-warehousing project. Where will you begin? Or maybe you're already implementing a warehouse, but the project is going awry and you're trying to get it back on track. What do you need to know to make it successful? Let's step back from the implementation details and examine some analysis and design roadblocks you need to overcome on your road to a successful data warehouse deployment. Along the way, we'll review the common terminology you need to understand and discuss some challenges you'll face on your quest. Following these guidelines can boost your chances for a successful data warehouse deployment.rnCommon TermsrnFirst, let's define the crucial pieces of the project: a data warehouse, a data mart, and data warehousing. Although they're often used interchangeably, each has a distinct meaning and impact on the project. A data warehouse is the cohesive data model that defines the central data repository for an organization. An important point is that we don't define a warehouse in terms of the number of databases. Instead, we consider it a complete, integrated data model of the enterprise, regardless of how or where the data is stored.rnA data mart is a repository containing data specific to a particular business group in an enterprise. All data in a data mart derives from the data warehouse, and all data relates directly to the enterprisewide data model. Often, data marts contain summarized or aggregated data that the user community can easily consume. Another way to differentiate a data warehouse from a data mart is to look at the data's consumers and format. IT analysts and canned reporting utilities consume warehouse data, whose storage is usually coded and cryptic. The user community consumes data mart data, whose storage is usually in a more readable format. For example, to reduce the need for complex queries and assist business users who might be uncomfortable with the SQL language, data tables could contain the denormalized code table values.rnFinally, data warehousing is the process of managing the data warehouse and data marts. This process includes all the ongoing support needs of the refresh cycle, database maintenance, and continual refinements to the underlying data model.rnOne important aspect of developing a warehouse is having a data dictionary that both the project team and the user community use to derive definitions and understand data elements within the warehouse. This statement seems simple, but when you're pulling data together from many source systems, a common implementation problem (which people usually don't identify until after deployment) involves reconciling similarly named data elements that come from different systems and have subtle differences in meaning. An example of this problem in the health care community is the attribute attending

没有更多推荐了,返回首页