思维线索(Thread of Thought)-ThoT梳理混乱的语境

论文地址:Thread of Thought Unraveling Chaotic Contexts

摘要

大型语言模型(LLMs)在自然语言处理领域开启了一个变革的时代,在文本理解和生成任务上表现出色。然而,当面对混乱的上下文环境(例如,干扰项而不是长的无关上下文)时,它们会遇到困难,导致无意中忽略了混乱上下文中的某些细节。为了应对这些挑战,我们引入了“思维线索”(Thread of Thought,ThoT)策略,该策略受到人类认知过程的启发。ThoT策略能够系统地分段和分析扩展的上下文,同时巧妙地选择相关信息。这个策略作为一个多功能的“即插即用”模块,可以与各种LLMs和提示技术无缝集成。在实验中,我们使用了PopQA和EntityQ数据集,以及我们收集的多轮对话响应数据集(MTCR),来说明ThoT策略在推理性能上显著优于其他提示技术。

Introduction

LLMs在人工智能领域,特别是在自然语言理解和生成方面取得的显著进展。这些模型在多项自然语言处理任务中展示了卓越的能力,如情感分析、机器翻译和摘要生成等,并在法律咨询和医疗诊断等行业中发挥着重要作用。

然而,尽管LLMs在处理长文本和复杂对话场景中表现出色,但它们在面对“混乱上下文”(Chaotic Contexts)时仍面临挑战。所谓的混乱上下文是指输入文本中包含大量来自不同来源的信息,这些信息可能是相互关联的,也可能是完全不相关的,且某些信息的重要性会根据上下文的不同而变化。这与“长上下文”(Long Context)不同,混乱上下文更强调信息的复杂性和数量,而不仅仅是文本的长度。

为了解决这一问题,提出了“思维线索”(Thread of Thought,简称ThoT)策略。ThoT策略的灵感来源于人类的认知过程,它使LLMs能够系统地分段和分析扩展的上下文,并从中选择相关的信息。这种策略旨在作为一个通用的“即插即用”模块,与各种预训练的语言模型和提示技术无缝集成,而不需要复杂的重新训练或微调。

ThoT策略的优势,包括其简单性、通用性和效率,通过ThoT策略,LLMs可以更好地管理和解释大量信息,从而在复杂的问题解答和对话生成任务中取得更好的性能。

相关工作

长文本上下文的大型语言模型(Long Context Large Language Models)

几种方法,这些方法通过不同的技术扩展了模型处理长文本的能力:

  • Parallel Context Windows (PCW):通过将长文本分割成多个窗口,并使用独立的注意力机制来处理这些窗口。
  • Positional Interpolation:通过调整位置索引,使得模型能够处理比以前更长的上下文,而不需要大量的微调。
  • LongNet:利用扩张注意力机制,使得注意力场随着距离的增加而指数级扩展。
  • Attention Convergence:强调了维持初始标记的KeyValue状态对于提升窗口注意力性能的重要性。
  • Attention with Linear Biases (ALiBi):通过基于距离的偏差来调整query-key注意力分数,实现了与在更长序列上训练的模型相当的困惑度。

与大型语言模型一起进行推理(Reasoning with Large Language Models)

LLMs在复杂推理任务中的影响,特别是通过生成中间步骤来改进算术、常识和符号推理的方法。

  • Chain-of-Thought (CoT) Prompting:通过生成中间步骤来提升模型的推理能力。
  • Graph of Thoughts (GoT) Framework:将LLMs的输出视为图形,以提高任务性能和效率。
  • Tree of Thoughts (ToT) Framework:在复杂问题解决任务中取得了显著的成功,如24点游戏。
  • Least-to-Most Prompting Strategy:将复杂问题分解为更简单的子问题,有效处理需要高级符号操作的任务。
  • Non-linear Thought Processes:通过GoT推理探索非线性思维过程,在数学和金融问题数据集上超越了线性CoT方法。

长文本中的知识点跟随(Knowledge Following in Long Context)

LLMs在长文本中提取相关信息的挑战,尤其是在信息被埋藏在长文本上下文中时。

  • StreamingLLM Framework:使LLMs能够在不需要额外微调的情况下处理无限长的序列。
  • Retrieval Augmentation:通过检索增强,使具有4K上下文窗口的LLMs能够与经过位置插值微调的16K上下文窗口的LLMs相媲美。

可通过减少对检索结果的依赖和改善提示压缩来提高LLMs在长文本场景中的表现。

Methodology

Thread of Thought 旨在增强大型语言模型(LLMs)在处理混乱上下文时的推理能力。

第一步:启动推理过程

ThoT策略的第一步是通过一个特定的提示(prompt)来引导LLMs对上下文进行分析性解构。这个提示是“Walk me through this context in manageable parts step by step, summarizing and analyzing as we go”,意为“逐步引导我浏览这个上下文的可管理部分,边总结边分析”。这个提示被设计为触发句(trigger sentence),用于启动推理过程。

作者提出了一个模板,将混乱的上下文X和查询Q整合到提示P中,格式为“[X] Q: [Q] [T] A:”,其中[T]代表触发推理过程的触发句。例如,使用上述触发句作为[T],提示P变为“[X] Q: [Q] Walk me through this context in manageable parts step by step, summarizing and analyzing as we go. A:”。然后将这个提示文本P输入到LLMs中,生成后续句子Z。这个过程模仿了人类面对复杂信息时采用的认知策略,即把信息分解成易于理解的部分,提炼关键点,并持续关注地浏览材料。

第二步:提炼结论

ThoT策略的第二步是在第一步建立的结构化推理基础上,使用另一个提示来将分析提炼成一个明确的答案。这一步的目标是利用第一步触发的有序思考序列,简洁地捕捉结论的本质。具体来说,作者使用了一个简单的模板来结合初始提示文本P、响应Z和结论标记[A],格式为“[P] [Z] [A]”,其中[A]是设计用来提取答案的触发句,例如“Therefore, the answer:”。

这个提取提示(extraction prompt)促使模型在分析中筛选,隔离出主要结论作为最终答案。该提示的设计是一种策略,旨在提高模型的专注力,促进回答的精确性和明确性。这种双层提示系统有效地解决了以往方法的局限性,同时避免了对模型进行密集的重新训练或复杂修改的需要。

核心优势

ThoT策略的核心优势在于其简单性和高效性。它作为一种“即插即用”的模块,可以与各种预训练的语言模型和提示策略无缝集成,避免了复杂的程序。此外,ThoT不仅提高了LLMs在混乱上下文中的性能,还增强了它们的推理能力。

Conclusion

本文提出了一种名为“思维线索”(Thread of Thought,ThoT)的新策略,旨在提高大型语言模型(LLMs)在处理混乱上下文信息时的性能。ThoT受人类认知过程的启发,显著提升了LLMs分段和分析扩展上下文的能力。我们将ThoT与现有方法进行了比较,后者通常需要复杂的重新训练、微调,或者在处理大量复杂信息时存在局限性。相比之下,ThoT提供了一个更为直接和高效的解决方案。它作为一个“即插即用”的模块,可以与各种预训练的语言模型和提示策略无缝集成,无需复杂的程序。ThoT的有效性通过使用长尾问答数据集(如PopQA和EntityQ)以及基于日常对话的多轮对话响应数据集进行了严格测试。这些评估的结果是明确的:ThoT不仅在处理混乱上下文方面表现出色,而且还增强了LLMs的推理能力。

  • 22
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值