python贪心算法实现(纸币找零举例)

目录

问题描述

贪心策略

Python代码实现

代码解释

示例输出

注意事项


问题描述

给定一组纸币面值和一个目标金额,找出用最少数量的纸币来找零的方法。

贪心策略

每次选择面值最大的纸币,直到无法继续选择为止。

Python代码实现

def min_bills(bills, amount):
    # 对纸币面值进行降序排序
    bills.sort(reverse=True)
    
    # 初始化结果列表,用于存储每种纸币的数量
    result = []
    
    # 遍历每种纸币
    for bill in bills:
        # 计算当前纸币的最大使用数量
        count = amount // bill
        # 更新剩余金额
        amount -= count * bill
        # 将当前纸币的数量添加到结果列表中
        result.append((bill, count))
        
        # 如果剩余金额为0,提前结束循环
        if amount == 0:
            break
    
    # 返回结果列表和是否成功找零
    if amount == 0:
        return result
    else:
        return "无法用给定的纸币找零"

# 示例
bills = [100, 50, 20, 10, 5, 1]
amount = 163
result = min_bills(bills, amount)

if isinstance(result, list):
    print("最少纸币数为:", sum([count for _, count in result]))
    print("具体组合为:", result)
else:
    print(result)

代码解释

  1. 排序:首先对纸币面值进行降序排序,确保每次选择最大面值的纸币。
  2. 初始化结果列表:用于存储每种纸币的数量。
  3. 遍历纸币:对于每种纸币,计算可以使用的最大数量,并更新剩余金额。
  4. 检查剩余金额:如果剩余金额为0,表示已经成功找零,提前结束循环。
  5. 返回结果:如果成功找零,返回结果列表;否则返回无法找零的提示。

示例输出

最少纸币数为: 6
具体组合为: [(100, 1), (50, 1), (20, 0), (10, 1), (5, 0), (1, 3)]

注意事项

  • 贪心算法在这种情况下通常能找到最优解,因为纸币面值的设计通常允许贪心算法找到最少数量的纸币。
  • 在实际应用中,可以根据具体问题调整贪心策略。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

licy__

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值