基于CLM(Constrained local model)人脸点检测算法

最近一篇文章《DeformableModel Fitting by Regularized Landmark Mean-Shift》中的人脸点检测算法在速度和精度折中上达到了一个相对不错的水平,这篇技术报告就来阐述下这个算法的工作原理以及相关的铺垫算法。再说这篇文章之前,先说下传统的基于CLM(C...

2015-07-30 10:03:58

阅读数 7273

评论数 4

python安装

从官方网站下载Python 根据不同的版本下载不通的安装包,这里先介绍WINDOWS怎么安装 下载好安装包后双击打开,进入选择安装用户界面。不需要进行选择安装默认的install for all users 点击下一步(next) 选择安装路径进行解压安装...

2015-07-27 17:42:11

阅读数 715

评论数 0

向量化编程

Matlab向量化编程,是matlab语言的精髓所在,向量化编程运用好了,可以从代码的运行效率明显改善中获得成功的快乐。 传统的流行观点大致如下: 1. 尽管避免循环的使用,多使用Matlab的内置函数; ----如果程序存在大量的循环~呵呵。mex,与C/C++混合编程就有了用...

2015-07-24 21:25:12

阅读数 5654

评论数 0

Caffe代码导读(1):Protobuf例子

Protobuf是一种可以实现内存与外存交换的协议接口。这是由谷歌开发的开源工具,目前研究Caffe源码时用到。 一个软件项目 = 数据结构 + 算法 + 参数,对于数据结构和算法我们都已经有较多研究,但不同开发者对参数管理却各有千秋。有人喜欢TXT格式化的参数文件,有人喜欢BIN简单高效,...

2015-07-24 11:05:50

阅读数 453

评论数 0

VELT学习网站

1.  http://blog.csdn.net/lights_joy/article/category/2827169

2015-07-24 10:01:59

阅读数 367

评论数 0

VELT-0.1.5开发:在VS2013下进行python开发

快乐虾 http://blog.csdn.net/lights_joy/(QQ群:Visual EmbedLinux Tools 375515651) 欢迎转载,但请保留作者信息 本文仅适用于vs2013 + velt-0.1.5 VELT的全称是V...

2015-07-24 09:58:35

阅读数 495

评论数 0

explicit

C++提供了关键字explicit,可以阻止不应该允许的经过转换构造函数进行的隐式转换的发生。声明为explicit的构造函数不能在隐式转换中使用。 外文名 explicit 性    质 形容词 同义词 expres...

2015-07-24 09:01:51

阅读数 464

评论数 0

caffe源码分析--SyncedMemory类代码研究

数据成员: void*cpu_ptr_;数据在cpu的指针 void*gpu_ptr_;数据在gpu的指针 size_tsize_;数据的大小 SyncedHeadhead_;表示数据的状态,有四种状态,分别是未初始化,数据在cpu中,数据在gpu中,数据在cpu和gpu中...

2015-07-23 20:25:38

阅读数 392

评论数 0

从64位库移植到32位库的总结

公司项目要求,将原64位系统下的代码移植到32位才能运行,由于现有64位代码依赖很多第三方库,,因而移植到32位需要重新编译,经验总结如下:   (1)对应的第三方库可到各自官网下载相应源码;   (2)针对每种库,根据32位系统下需要的编译器选择vs版本,如vs2008、vs2010、vs2...

2015-07-23 15:43:25

阅读数 413

评论数 0

caffe使用MemoryDataLayer从内存中加载数据

最近在搞caffe的应用,因为很多时候我们需要进行服务器来进行特征的抽取,所以我们需要很将单张图片丢入caffe的网络进行一次传递,这样就诞生了一个从内存中如何加载数据进入caffe的需求,这里我直接贴出代码来先: [cpp] view plaincopy ...

2015-07-23 09:14:04

阅读数 4502

评论数 3

《Batch Normalization Accelerating Deep Network Training by Reducing Internal Covariate Shift》阅读笔记与实现

今年过年之前,MSRA和Google相继在ImagenNet图像识别数据集上报告他们的效果超越了人类水平,下面将分两期介绍两者的算法细节。   这次先讲Google的这篇《Batch Normalization Accelerating Deep Network Training by Re...

2015-07-23 08:43:21

阅读数 697

评论数 0

Windows下编译fast rcnn

一、准备 caffe-windows:https://github.com/happynear/caffe-windows。如果你的caffe-windows版本是2015/07/09之前下载的,请重新下载并重新编译。重新编译时请首先编译python接口,因为马上就要用到。主程序和matlab...

2015-07-22 18:00:29

阅读数 7409

评论数 19

Google开源命令行参数解析库gflags

今天写程序时需要写一个命令行解析程序,于是网上搜索getopt()的实现代码,但搜到的信息基本上是如何使用getopt(),而系统又是Windows的;于是想到了以前项目中使用到的Google开源命令行解析库gflags。 google开源的gflags是一套命令行参数解析工具,他可以替代g...

2015-07-21 17:25:20

阅读数 1971

评论数 0

Windows 中OpenBlas 的安装 - Windows 32bit 适用

Windows 中OpenBlas 的安装 1. 准备 OpenBlas version:V-0.2.12 IDE:Visual Studio 2008 OS: Win7 2.安装步骤 2.1 下载OpenBlas,解压至路径my_path,可更改、简化解压文件夹名,以方便后续路径的引...

2015-07-21 09:24:27

阅读数 950

评论数 0

VS2012 下编译boost1.52

1. 下载boost_1_52_0.7z     http://sourceforge.net/projects/boost/files/boost/1.52.0/ 2. 解压缩到 d:\boost 目录下 3. 编译bjam (1)开始菜单->所有程序->Micros...

2015-07-20 17:33:43

阅读数 361

评论数 0

如何在caffe中增加layer以及caffe中triplet loss layer的实现

关于triplet loss的原理,目标函数和梯度推导在上一篇博客中已经讲过了,具体见:triplet loss原理以及梯度推导,这篇博文主要是讲caffe下实现triplet loss,编程菜鸟,如果有写的不优化的地方,欢迎指出。 1.如何在caffe中增加新的layer ...

2015-07-16 13:38:19

阅读数 1127

评论数 0

caffe study (1) - 数据结构(1)

以下主要是对于Caffe主页文档的总结 1. 结构的生成:caffe的基本结构是采用google的proto库自动生成的,基本流程就是定义一个配置文件,扩展名为proto,调用proto库的编译器编译这个文件可以生成相应的类的c++的代码。具体的可以参见proto库的介绍。 下面来介绍caff...

2015-07-14 09:37:11

阅读数 773

评论数 0

caffe study(4) - 优化算法基本原理

机器学习就两个问题,一个是model的定义,一个就是如何优化,model是战略,优化则是执行。 在Caffe现在的版本中,主要使用了三种优化算法SGD、AdaGrad、以及NAG,这三种算法快速、高效,缺点就是极容易收敛到局部极值点或者不容易收敛。 a. 就个人理解来说,对于大数据的处...

2015-07-14 09:36:00

阅读数 1180

评论数 0

caffe study(2) 关于forward和backward - backward

1. 在本质上backward解决的是导数计算的问题,用的就是BP算法,所谓的BP算法就是使用当前层权重对于当前误差加权然后传递到下层节点的一个流程。下图是caffe的doc中示意的,这里面有两部分,一个部分就是向下传递的对于g的偏导数,这个数值就是反向传播的输出;另外一部分就是在当前层中对于当前...

2015-07-14 09:35:09

阅读数 1016

评论数 0

caffe study(3) 关于激活函数以及loss function

loss 是估计值和真实值之映射到某一空间的误差,而loss function就是这种误差的描述形式,loss function反映出了对于问题的定义。在caffe中,包含了常用的loss function,主要有以下几种: MULTINOMIAL_LOGISTIC_LOSS SIGMOI...

2015-07-14 09:33:55

阅读数 1198

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭