Caffe学习之数据层及参数设置

caffe的各种数据层在caffe.proto文件中有定义。通过对定义的caffe.proto文件进行编译,产生支持各种层操作的c++代码。后面将会详细解读caffe.proto文件(在caffe里就是当做一个自动代码生成工具来用)。 本文主要介绍caffe可以读入数据的各种格式,方便后...

2017-11-30 11:24:22

阅读数 280

评论数 0

深度学习之经验总结

1.一个深度网络,预训练时网络入口为224 x 224,而fine-tune时为448 x 448,这会带来预训练网络与实际训练网络识别图像尺寸的不兼容。yolov2直接使用448 x 448的网络入口进行预训练,然后在检测任务上进行训练,效果得到3.7%的提升。  2. 一个二分类网络,如何ac...

2017-11-17 14:08:11

阅读数 143

评论数 0

概念理解R-CNN --> FAST-RCNN --> FASTER-RCNN

R-CNN: (1)输入测试图像; (2)利用selective search 算法在图像中从上到下提取2000个左右的Region Proposal; (3)将每个Region Proposal缩放(warp)成227*227的大小并输入到CNN,将CNN的fc7层的输出作为特...

2017-11-17 11:25:46

阅读数 594

评论数 0

生成对抗网络Generative Adversarial Nets(译)

仅供参考,如有翻译不到位的地方敬请指出。 论文地址:Generative Adversarial Nets  论文翻译:XlyPb(http://blog.csdn.net/wspba/article/details/54577236) 摘要 我们提出了一个通过对抗过程估计生成...

2017-11-08 11:00:58

阅读数 9203

评论数 0

深度学习之收敛问题

最近在用caffe, 想用caffe来做人脸识别。使用的是1558个人的人脸数据集,每个人35张照片训练,15张照片用于验证。使用caffe中自带的caffenet模型来进行微调,但是最后的误差一直在7点多以上,请问大家,是模型有问题,还是数据集问题,总是达不到收敛的效果,希望大家为我解答 ...

2017-11-08 10:49:48

阅读数 3088

评论数 0

深度学习之损失函数与激活函数的选择

在深度神经网络(DNN)反向传播算法(BP)中,我们对DNN的前向反向传播算法的使用做了总结。其中使用的损失函数是均方差,而激活函数是Sigmoid。实际上DNN可以使用的损失函数和激活函数不少。这些损失函数和激活函数如何选择呢?以下是本文的内容。 MSE损失+Sigmoid激活...

2017-11-02 22:25:58

阅读数 9634

评论数 1

方差、标准差、均方差、均方误差区别总结

一、百度百科上方差是这样定义的:  (variance)是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是各个数据分别与其平均数之差的平方的和的平均数。在许多实际问题中,研究方差即偏离程度有着重...

2017-11-02 21:54:54

阅读数 4824

评论数 0

深度学习中的损失函数总结

图片分类里的Center Loss 目标函数,损失函数,代价函数 损失函数度量的是预测值与真实值之间的差异.损失函数通常写做L(y_,y).y_代表了预测值,y代表了真实值. 目标函数可以看做是优化目标,优化模型的最后目标就是使得这个目标函数最大或者最小. 代价函数类似于目标函数. 区别:目标函数...

2017-11-02 21:47:16

阅读数 11184

评论数 0

卷积:如何成为一个很厉害的神经网络

卷积:如何成为一个很厉害的神经网络 Kaiser 8 个月前 原文:An Intuitive Explanation of Convolutional Neural Networks 作者:Ujjwal Karn 翻译:Kaiser(王司图) 动图+在线练习版本:卷...

2017-11-02 21:34:42

阅读数 405

评论数 0

为什么使用卷积层替代CNN末尾的全连接层

CNN网络的经典结构是: 输入层—>(卷积层+—>池化层?)+—>全连接层+  (其中+表示至少匹配1次,?表示匹配0次或1次) 全卷积神经网络Fully Convolutional Network (FCN) 全卷积神经网络即把CNN网络最后的全连接层替换为卷积层...

2017-11-02 20:34:49

阅读数 5845

评论数 1

从 20 篇ICCV 2017录用论文,看商汤科技四大攻坚领域|ICCV 2017

今秋,在以水城而闻名的威尼斯,来自世界各地的三千多位学者荟萃一堂,共赴两年一度的国际计算机视觉大会 (ICCV)。这次大会的一个重要亮点就是中国学者的强势崛起。根据组委会公开的数字,会议 40% 的论文投稿来自中国的研究者。在中国的人工智能浪潮中,商汤科技以及它与港中文的联合实验室无疑是其中最有代...

2017-11-01 09:54:45

阅读数 803

评论数 0

提示
确定要删除当前文章?
取消 删除