什么样的业务场景适合AggregateFunction

对于这一类的:
统计的数据的窗口为一天内(24小时),然后每X秒刷新一下相关数据的实时变化,每次变化的值是在之前的值上有一个累计,然后每天归0后,重新计算当天的数据。
诸如此类的需求还有:每天的UV、PV。
凡是这一类的业务场景、需求,全部适合使用Flink的AggregateFunction和ReduceFunction。我们今天就精细化的讲一下AggregateFunction的使用。这块是最常用的。
从需求出发如何设计这个架构
很多人一看,哦。。。是当天的数据。互联网应用里当天的数据就是千万级的,那么你要累计,那么我每5秒跑一个批吧,前端用VUE JS或者是小程序、APP做一个轮循就完了。
那好吧,你可以去试试看,我不阻止你,然后系统
本文介绍了如何使用Flink的AggregateFunction解决以天为单位的实时统计问题,如PV和UV。针对大数据量并发场景,强调了实时计算设计的重要性,提出"打散IO、化整为零、各个击破、预先准备"的策略。通过Flink的AggregateFunction和Redis实现每5秒刷新的统计,并详细解析了核心代码和业务逻辑。
订阅专栏 解锁全文
1970

被折叠的 条评论
为什么被折叠?



