目录
(一)Flood Fill(搜索连通块)
1)池塘计数


“多源”BFS搜索模板:
(1)关于全局变量的设置
<1>对于行和列,一般用n,m表示,因为在BFS过程中,需要判断该点是否出界,又为了防止函数传参时出现失误,所以一般将地图的边界放在全局变量,方便维护
<2>给定了行数和列数,那么就要放置地图,那么此时就要根据题解和样例来理解地图的类型,这里的类型主要分为:字符型和整数型 ,在大多数情况下一般都为字符型,地图用二维数组char/int g[N][N]表示
<3>在广搜的过程中为了避免没有意义的重复寻找,我们需要一个bool st[N][N]数组,来帮助我们判断该点是否已经走过,如果走过的话,那么就continue;
<4>如果题目要求的是从一个点到某一个点的最短距离的话,那么还需要一个dist[N][N]数组,来其含义是从 起点(i,j) ---->> (N,N) 的距离
(2)main函数的内容
<1>输入行数和列数
<2>输入地图
有两种方式:
int n, m; cin >> n >> m; //(1)一层for循环 for (int i = 0; i < n; i++) { cin >> g[i]; } //(2)两层for循环 for(int i=0;i<n;i++) for (int j = 0; j < m; j++) { char ch; cin >> ch; g[i][j] = ch; }<3> 调用BFS
-->>如果是“单源BFS”,那么此时就只要记录下起点,并以该起点为参数调用BFS即可
-->>如果是“多源BFS”,那么此时需要在两层for循环中,依次寻找起点,并以该起点为参数调用BFS
代码实现:
//单源BFS调用 int beginx, beginy; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { cin >> g[i][j]; if (g[i][j] == "起点") { beginx = i; beginy = j; } } bfs(beginx, beginy,endx,endy); }//多源BFS调用 int beginx, beginy; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { cin >> g[i][j]; if (g[i][j] == "起点" && !st[i][j])//是起点并且未走过 { beginx = i; beginy = j; bfs(beginx, beginy); } } }
稍作休息,写一下最重要的BFS模板
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
using namespace std;
typedef pair<int, int> PII;
const int N = 1010;
char g[N][N];//存地图
bool st[N][N];//判断是否走过
//int dist[N][N];
int n, m;
//方向数组
int dx[8] = { 0,0,-1,1,-1,1,-1,1 };
int dy[8] = { 1,-1,0,0,1,1,-1,-1 };
void bfs(int x, int y)
{
queue<PII> q;//如果是"多源"BFS的话,要把队列创建为局部变量
q.push({ x,y });//起点入队
st[x][y] = true;//标记已经走过
while (q.size())//当队列不为空
{
PII t = q.front();//取出队头元素
q.pop();//删
for (int i = 0; i < 8; i++)//向8个方向进行扩展
{
int a = t.first + dx[i];//接受新的扩展坐标
int b = t.second + dy[i];
if (a < 0 || a >= n || b < 0 || b >= m || st[a][b] || g[a][b] == '.') continue;//如果出界 || 走过 || 地图中该点被禁止走 continue
q.push({ a,b });//入队
st[a][b] = true;//将所有连通的标记为true
}
}
}
BFS的模板到这里,这道题已经不用过多介绍了
核心思路就是:
在main函数中两层循环枚举到雨水所在的位置作为起点,然后BFS扩展,将与之联通的点都标记为true,(其实标记地图为 ‘.' )能提高效率-->>可以减少枚举的起点,但是思路都是一样
完整的BFS代码:
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
using namespace std;
typedef pair<int,int> PII;
const int N=1010;
char g[N][N];//存地图
bool st[N][N];//判断是否走过
//int dist[N][N];
int n,m;
//方向数组
int dx[8]={0,0,-1,1,-1,1,-1,1};
int dy[8]={1,-1,0,0,1,1,-1,-1};
void dfs(int x,int y)
{
queue<PII> q;
q.push({x,y});
st[x][y]=true;
while(q.size())
{
PII t=q.front();
q.pop();
for(int i=0;i<8;i++)
{
int a=t.first+dx[i];
int b=t.second+dy[i];
if(a<0 || a>=n || b<0 || b>=m || st[a][b] || g[a][b]=='.') continue;
q.push({a,b});
st[a][b]=true;//将所有连通的标记为true
g[a][b]='.';
}
}
}
int main()
{
cin>>n>>m;
for(int i=0;i<n;i++)
{
scanf("%s",g[i]);
}
int cnt=0;
for(int i=0;i<n;i++)

本文详细介绍了BFS(广度优先搜索)和DFS(深度优先搜索)算法在处理图形问题,如池塘计数、迷宫最短路径和多源搜索中的应用。通过实例解析,阐述了如何使用这两种算法解决实际问题,包括如何构建搜索模板,如何处理地图数据,并给出了多源BFS和DFS的通用模板。同时,还涵盖了迷宫问题、城堡问题和山峰山谷问题的解决方案,以及如何找到矩阵中的最短路径。
最低0.47元/天 解锁文章
715





