无人驾驶中的人工智能技术(Drive.Ai)
1 环境感知,这是计算机视觉领域的研究重点, 常说的slam就是指这个,基于激光雷达的slam系统目前已经能较好的进行地图定位,局部环境地图构建
2 标识识别,包括车道识别 交通标志识别(比如红绿灯) 车辆行人识别和运动跟踪,在这里,CNN(Convolutional Neural Network,卷积神经网络)技术成了目前最好的技术,标识识别是无人驾驶行为决策的基础
cnn技术也是对激光雷达的一个很好的补充,因为激光雷达是低像素,不能很好的识别障碍物
3 行为决策系统技术
行为决策系统或者叫驾驶决策系统,包括全局的路径规划导航 和 局部的避障避险,以及常规的基于交通规则的行驶策略(最简单的,让车保持在车道内),使用到的技术分成三类
一,基于推理逻辑和规则的技术
本文探讨了无人驾驶的关键技术,包括基于激光雷达的SLAM环境感知,CNN在标识识别中的应用,行为决策系统中的遗传算法与神经网络,并分析了车辆控制系统中神经网络模糊控制的重要性。同时,指出在当前技术阶段,推理逻辑与神经网络的结合是无人驾驶系统的可行方向。
最低0.47元/天 解锁文章
77

被折叠的 条评论
为什么被折叠?



