【Mysql数据库之otter 介绍】

Otter是一款基于数据库增量日志解析实现准实时同步至本地或远程MySQL/Oracle数据库的分布式系统。支持Canal获取增量日志,并采用Manager+Node架构进行配置管理和状态反馈。利用Zookeeper解决多节点间的协调问题。
摘要由CSDN通过智能技术生成

otter 基于数据库增量日志解析,准实时同步到本机房或异地机房的mysql/oracle数据库. 一个分布式数据库同步系统

 

名称:otter

译意: 水獭,数据搬运工

语言: 纯java开发

定位: 基于数据库增量日志解析,准实时同步到本机房或异地机房的mysql/oracle数据库. 一个分布式数据库同步系统

 

 

原理描述:

1. 基于Canal开源产品,获取数据库增量日志数据。 什么是Canal, 请点击

2. 典型管理系统架构,manager(web管理)+node(工作节点)

    a. manager运行时推送同步配置到node节点

    b. node节点将同步状态反馈到manager上

3. 基于zookeeper,解决分布式状态调度的,允许多node节点之间协同工作.

 

什么是canal?

otter之前开源的一个子项目

 



 

 

事前控制:比如paoxs协议,在多地数据写入各自数据存储之前,就已经决定好最后保留哪条记录

事后处理:指A/B两地修改的数据,已经保存到数据库之后,通过数据同步后保证两数据的一致性

事前控制

paxos协议,相信大家研究的人也比较多,但是它有一些局限性,就拿zookeeper来说,它使用了paxos的一个变种,但基本原理还是相似的。

我们拿zookeeper的几种部署模式来看:

1. 先看: A地部署leader/follower集群,B地部署observer.

此时A地收到数据后,需要的网络操作基本为同机房的leader/follower的paxos协议,耗时基本可控

此时B地收到数据后,需要的网络操作为:

B地接收到请求,转发给A地,一次机房网络

A地接收到请求,由leader转发给follower进行投票决策,同机房网络

A地leader将投票的结构,反馈给B地,一次机房网络.

这样一来,也就是说,事务时间 = 一次异地机房RTT + 同机房paxos算法耗时. 比如中美网络延迟200ms,那事务时间基本就是200ms+ 。 但此时,B地机房基本是一个只读镜像,读数据也有延迟,其系统写扩展性全在A机房,某一天当A机房不够用时,A机房进行拆分,就会遇到下一个问题。

 

2. 再看:A地和B地组成leader/follower

此时A第收到数据后,需要的网络操作为:(假如A不是leader,B是leader)

首先需要发送数据到B,一次机房网络

B收到A的提议数据后,发起一个投票到A,一次机房网络

A收到提议后,返回一个投票结果到B,一次机房网络

B收到大部分投票结果,做出决定之后,将结果反馈给A,一次网络交互.

这种理想无冲突的情况,总共会有2次RTT,如果优化A发起的提议自己默认投票,不返回给A进行投票,可以优化为1次RTT. 针对中美网络延迟200ms,那事务时间基本是200ms+. 如果A地和B地同时写入,那事务时间可能会翻倍。

总结:如果你能接受事务时间的影响(比如你A地和B地的网络延迟只有10ms),那是可以考虑选择paxos协议. 但目前otter所要解决的需求为中美200ms的RTT,暂时无法接收paxos协议来解决一致性问题.

 

事后处理

针对事后处理,不管哪种方案,一定会是一个最终一致性,因为在你做处理前,A地和B地的数据内容已经不一致了,你不论选择任何一个版本,对另一边来说都是一个数据版本丢失,最终一致性。

针对数据最终一致性处理,goldengate文档中提到了几种case :

trusted source. 信任站点,数据出现冲突时,永远以某一边为准覆盖另一边

timestamp,基于数据的修改时间戳,修改时间新的覆盖旧的数据

数据类型merge, 比如针对库存信息,A地库存减一,B地库存减二,两边同步之后A地和B地的数据应该是减三,合并两者减一和减二的操作

针对trusted source/timestamp模型,一定需要建立一个冲突数据kv表,(比如trusted source场景,如果B地修改了记录,而A地没修改此记录,那B地可以覆盖A地,即使A地是trusted source) ,对应冲突数据KV表的插入和删除,如果插入和删除不及时,就会有各种各样的误判,导致数据不一致。

举个插入不及时的case: 比如A地和B地进行双向同步,同时修改了同一记录,但A地的binlog解析器因为异常挂起了,导致构建冲突数据KV表数据延迟了,而此时B地的数据就会认为无冲突,直接覆盖了A,即使A地是trusted source,然后A地数据解析恢复后,同步到B地时,因为A是trusted source,就会覆盖B地的数据,最后就是A和B两地各位两边之前的版本,导致数据不一致。

 

因为goldengate外部文档针对双A机房同步,数据一致性处理描述的比较少,我只能推测到这,基本结论是风险太大,所以otter需要有一种完全可靠的数据一致性方案。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值