数据积分-牛顿科茨法与高斯勒让德法对比及示例

在结点x i上插值f的次数最多是n次的多项式
p(x)=∑f(x i)l i(x)
拉格朗日插值多项式:
l i(x)= ∏(x-x j)/(x i-x j)
 
基于插值的数值积分:
∫f(x)dx≈∫p(x)dx=∑f(x i∫li(x) dx =∑Aif(xi)
结点等距即为牛顿 -科茨公式
 
例:设插值多项式是2次,积分区间[0,1],设f(x) ≈p(x)=c 0+c 1x+c 2x 2
求牛顿-科茨积分公式。
n=2;结点(0,1/2,1)
对结点0,1/2,1的三个基本多项式是:
l 0=(x-1/2)(x-1)/((0-1/2)(0-1))=2(x-1/2)(x-1)
l 1=-4 x(x-1)
l 2=2 x(x-1/2)
则A 0= ∫l0(x)=1/6
A 1= ∫l1(x)=2/3
A 2= ∫l2(x)=1/6
所以:∫f(x)dx≈ 1/6 f(0)+2/3 f(1/2)+1/6 f(1)
 
也可以用 待定系数法求解
设∫f(x)dx≈ A0 f(0)+ A1 f(1/2)+ A2 f(1)
它对于所有次数 ≤2 的多项式是精确成立的
依次把多项式f(x)=1,x,x 2作为试用函数,得到
1=∫f(x)dx=∫1dx=  A0+ A1 + A2
1/2=∫f(x)dx=∫xdx=  1/2 A1 + A2
1/3=∫f(x)dx=∫x 2dx=  1/4 A1 + A2
这三个方程的联立方程组的解是:
A 0=1/6;
A 1=2/3;
A 2=1/6
因为公式是线性的,所以对任何二次多项式
f(x) =c0+c1x+c2x2 ,它将产生积分的精确值。
 
高斯求积公式
ω(x) 为给定的正的权函数的积分公式:
∫f(x)ω(x)dx≈∑ Aif(xi)
Ai= ∫ω(x)li(x) dx
 = ∫ω(x) ∏(x-xj)/(xi-xj) dx
如果预先限制结点x i,如上述拉格朗日插值积分及牛顿科茨积分,
可以找到次数 ≤n的多项式是精确成立的求积公式;
如果 不限制结点,因为有n+1个系数A i和n+1个结点x i
则可以找到次数 ≤2n+1的多项式是精确成立的求积公式;
高斯求积定理
ω是正的权函数,q是一个n+1次非零多项式并且与∏ nω 正交的,也就是对 任意 pє∏n n 阶多项式空间),都有 q(x) p(x)ω(x) dx=0
若x 0,x 1,…,x n是q的零点,则具有 Ai= ∫ω(x) ∏(x-xj)/(xi-xj) dx
公式中给定系数 Ai的求积公式 f(x)ω(x)dx≈∑ Aif(xi)
对于所有 fє∏2n+1是精确成立的。
 
也就是说:与 n关于 ω正交的n+1次非零多项式的零点x 0,x 1,…,x n作为积分结点的话,可以找到次数 ≤2n+1的多项式是精确成立的求积公式  f(x)ω(x)dx≈∑Aif(xi)
f(x)= c 0+c 1x+c 2x 2+...+c 2n+1x 2n+1
积分结点x 0,x 1,…,x n叫做 高斯点
 
权函数 ω(x)=0 是一种特别重要的情况,这时,如果积分区间取[-1,1],则高斯积分公式变为
-1 f(x) dx≈0 Aif(xi)
以高斯点为零点的n+1次多项式q n+1(x)=(x- x 0) (x- x 1)… (x- x n)
称为 勒让德(Legendre)多项式
P_n(x) = {1 \over 2^n n!} {d^n \over dx^n } \left[ (x^2 -1)^n \right].


 

高斯-勒让德积分,对2个高斯点,2阶勒让德多项式来说,q 2(x)=1/2(3x 2-1);  n=1
2个高斯点为:√3/3,-√3/3
所以
-1 f(x) dx≈0 Aif(xi)= A0f(√3/3 )+ A1f(-√3/3)
 
例; 设插值多项式是2n+1=3次,积分区间 [-1,1],设f(x) ≈p(x)=c 0+c 1x+c 2x 2+c 3x 3
求高斯-勒让德积分公式。
采用 待定系数法求解
设∫f(x)dx≈ A0 f(-√3/3)+  A1 f(√3/3)
它对于所有次数 ≤3 的多项式是精确成立的
依次把多项式f(x)=1,x作为试用函数,得到
2=∫f(x)dx=∫1dx=  A0+ A1
0=∫f(x)dx=∫xdx=  -√3/3  A0 +√3/3  A0
这三个方程的联立方程组的解是:
A 0=1;
A 1=1
所以两点高斯-勒让德积分公式为:
-1 f(x)dx≈f(-√3/3)+  f(√3/3)
 
分别令f(x)=x 2, x 3, x 4
f(x)=x 时, -1 f(x)dx=2/3;f(-√3/3)+  f(√3/3)=2/3  精确成立
f(x)=x 时, -1 f(x)dx=0;f(-√3/3)+  f(√3/3)=0      精确成立
f(x)=x 时, -1 f(x)dx=2/5;f(-√3/3)+  f(√3/3)=2/9  不精确成立
验证了两点高斯-勒让德积分公式对 次数 ≤3 的多项式是精确成立的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值