一、键值设计
1、key名设计
/**
* 1、可读性和管理性
* 以业务名或数据库名为前缀 防止key冲突,用冒号分割
* 业务名:表名:id live:draw:111
* 2、简洁性
* 保证语义的前提下,控制key的长度 不可忽视内存占用
* user:{uid}:friends:messages:{mid} 简化为 u:{uid}:fr:m:{mid}
* 3、不要包含特殊字符
* 返利: 包含空格、换行、单双引号以及其他转义字符
*
*/
2、value设计
/**
* 1、拒绝bigkey
* 防止网卡流量、慢查询,string类型控制在10KB以内,hash、list、set、zset元素个数不要超过5000
* 反例:一个包含200万个元素的list
* 非字符串的bigkey,不要使用del删除,使用hscan、sscan、zscan方式渐进式删除
* 同时要注意防止bigkey过期时间自动删除问题
* 例如一个200万的zset设置1小时过期,会触发del操作,造成阻塞,而且该操作不会不出现在慢查询中(latency可查)
* 查找方法和删除方法
* 2、选择适合的数据类型
* 例如:实体类型(要合理控制和使用数据结构内存编码优化配置,例如ziplist,但也要注意节省内存和性能之间的平衡)
* 3、控制key的生命周期
* redis不是垃圾桶,建议使用expire设置过期时间(条件允许可以打散过期时间,防止集中过期),不过期的数据重点关注idletime
*/
反例:
set user:1:name tom
set user:1:age 19
set user:1:favor football
正例
hash存储
hmset user:1 name tom age 19 favor football
二、命令使用
1、O(N)命令关注N的数量
例如hgetall、lrange、smembers、zrange、sinter等并非不能使用,但是需要明确N的值。有遍历的需求可以使用hscan、sscan、zscan代替
2、禁用命令
禁止线上使用keys、flushall、flushdb等,通过redis的rename机制禁掉命令,或者使用scan的方式渐进式处理
3、合理使用select
redis的多数据库较弱,使用数字进行区分,很多客户端支持较差,同时多业务用多数据库实际还是单线程处理,会有干扰
4、使用批量操作提高效率
原生命令:例如mget、mset
非原生命令:可以使用pipeline提高效率
但要注意控制一次批量操作的元素个数(例如500以内,实际也和元素字节数有关)
注意两者不同:
原生是原子操作,pipeline是非原子操作
pipeline可以打包不同的命令,原生做不到
pipeline需要客户端和服务端同时支持
5、不建议过多使用Redis事务功能
Redis的事务功能较弱(不支持回滚),而且集群版本(自研和官方)要求一次事务操作的key必须在一个slot上(可以使用hashtag功能解决)
6、Redis集群版本在使用Lua上有特殊要求
/**
* 1、所有key都应该由 KEYS 数组来传递
* redis.call/pcall 里面调用的redis命令,key的位置,必须是KEYS array,否则直接返回error
* "-ERR bad lua script for redis cluster, all the keys that the script uses should be passed using the KEYS arrayrn"
* 2、所有key,必须在1个slot上,否则直接返回error
* "-ERR eval/evalsha command keys must in same slotrn"
*/
7、monitor命令
必要情况下使用monitor命令时,要注意不要长时间使用
三、客户端使用
1、避免多个应用使用一个redis实例
不相干的业务拆分,公共数据做服务化
2、使用连接池
可以有效控制连接,同时提高效率,标准使用方式:
执行命令如下:
Jedis jedis = null;
try {
jedis = jedisPool.getResource();
//具体的命令
jedis.executeCommand()
} catch (Exception e) {
logger.error("op key {} error: " + e.getMessage(), key, e);
} finally {
//注意这里不是关闭连接,在JedisPool模式下,Jedis会被归还给资源池。
if (jedis != null)
jedis.close();
}
3、熔断功能
高并发下建议客户端添加熔断功能(例如netflix hystrix)
4、合理的加密
设置合理的密码,如有必要可以使用SSL加密访问(阿里云Redis支持)
5、淘汰策略
根据自身业务类型,选好maxmemory-policy(最大内存淘汰策略),设置好过期时间
默认策略是volatile-lru,即超过最大内存后,在过期键中使用lru算法进行key的剔除,保证不过期数据不被删除,但是可能会出现OOM问题
其他策略如下:
allkeys-lru:根据LRU算法删除键,不管数据有没有设置超时属性,直到腾出足够空间为止。
allkeys-random:随机删除所有键,直到腾出足够空间为止。
volatile-random:随机删除过期键,直到腾出足够空间为止。
volatile-ttl:根据键值对象的ttl属性,删除最近将要过期数据。如果没有,回退到noeviction策略。
noeviction:不会剔除任何数据,拒绝所有写入操作并返回客户端错误信息"(error) OOM command not allowed when used memory",此时Redis只响应读操作