NumPy案例巩固强化3

本文仅介绍 Numpy 库中:

  • 广播机制的介绍
  • 行/列向量的创建

1、广播机制的介绍

有两个数组 a 和b :

此时计算 c=a+b 时,将使用广播机制,即:如果数组的秩不同, 将秩较小的数组进行扩展(复制已有的), 直到两个数组的尺寸长度都一样。

此时数组 a 的秩为1, b 的秩为2,因此需要扩展 (stretch) 数组 a ,将 a 进行复制扩展,直到两个数组尺寸相同。本次扩展只需将 a 扩展为 2×3 即可:

 2、Numpy数组定义向量

Numpy库中有numpy.matrix专用于向量或矩阵的代数运算,但使用numpy.array定义矩阵和进行运算时可以使用数组的修改形状、翻转、连接和切片等操作,相较于numpy.matrix在某些应用中更加灵活。

对比使用numpy.matrix和numpy.array定义向量

import numpy as np
a0 = np.array([1,2,3,4])
a = np.array([[1,2,3,4]])
b = np.matrix([5,6,7,8])
c = np.array([[5],[6],[7],[8]])
d = a0 + a
e = a0 + c

下表列出上述程序中各变量的区别:

 则最后 e 的值为:

 总结:形状如 (4, ) 的数组可在代数运算中视为行向量

AI实战-加拿大的工业产品价格指数数据集分析预测实例(含4个源代码+18.20 MB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:4个代码,共38.64 KB;数据大小:1个文件共18.20 MB。 使用到的模块: numpy pandas os sklearn.model_selection.train_test_split tensorflow.keras.models.Sequential tensorflow.keras.layers.Dense sklearn.impute.KNNImputer sklearn.impute.IterativeImputer sklearn.linear_model.LinearRegression matplotlib.pyplot sklearn.datasets.make_blobs sklearn.cluster.DBSCAN sklearn.neighbors.LocalOutlierFactor sklearn.ensemble.IsolationForest sklearn.svm.OneClassSVM sklearn.preprocessing.MinMaxScaler sklearn.preprocessing.StandardScaler sklearn.preprocessing.MaxAbsScaler sklearn.preprocessing.RobustScaler sklearn.preprocessing.PowerTransformer sklearn.preprocessing.QuantileTransformer sklearn.preprocessing.OneHotEncoder sklearn.preprocessing.LabelEncoder category_encoders seaborn sklearn.cluster.KMeans sklearn.metrics.silhouette_score sklearn.decomposition.PCA sklearn.datasets.load_iris scipy.cluster.hierarchy.linkage scipy.cluster.hierarchy.dendrogram sklearn.cluster.AgglomerativeClustering sklearn.mixture.GaussianMixture matplotlib warnings sklearn.metrics.mean_squared_error sklearn.metrics.r2_score plotly.express sklearn.ensemble.RandomForestRegressor sklearn.ensemble.GradientBoostingRegressor catboost.CatBoostRegressor sklearn.metrics.mean_absolute_error sklearn.model_selection.RandomizedSearchCV statsmodels.tsa.arima.model.ARIMA
AI实战-营销数据集分析预测实例(含20个源代码+797.47 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:20个代码,共176.38 KB;数据大小:2个文件共797.47 KB。 使用到的模块: pandas matplotlib.pyplot warnings numpy seaborn sklearn.model_selection.train_test_split sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.confusion_matrix sklearn.metrics.classification_report os sklearn.preprocessing.StandardScaler sklearn.cluster.KMeans sklearn.metrics.silhouette_score sklearn.decomposition.PCA scipy.stats.f_oneway scipy.stats.chi2_contingency sklearn.pipeline.Pipeline sklearn.model_selection.GridSearchCV sklearn.compose.ColumnTransformer sklearn.linear_model.LogisticRegression xgboost.XGBClassifier sklearn.base.BaseEstimator sklearn.base.TransformerMixin sklearn.feature_selection.SelectFpr sklearn.feature_selection.f_classif sklearn.feature_selection.chi2 sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.roc_auc_score sklearn.metrics.roc_curve collections.defaultdict sklearn.metrics datetime.datetime itertools lightgbm catboost.CatBoostClassifier xgboost sklearn.impute.SimpleImputer sklearn.model_selection.StratifiedKFold sklearn.metrics.ConfusionMatrixDisplay sklearn.metrics.make_scorer optuna sklearn.preprocessing.MinMaxScaler scipy.stats.pearsonr statsmodels.api statsmodels.formula.api.ols sklearn.metrics.auc imblearn.over_sampling.SMOTE sklearn.svm.SVC sklearn.model_selection.cross_val_score sklearn.metrics.precision_recall_curve
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

辣椒种子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值