Matplotlib绘图属性

(1)、导入库
import matplotlib.pyplot as plt
import numpy
(2)、figure对象和subplot简单运用
#figure对象
fig = plt.figure()      #figure是图象对象
ax1 = fig.add_subplot(2,2,1)    #创建一个2*2的子图,放在第一个位置
ax2 = fig.add_subplot(2,2,2)    #创建一个2*2的子图,放在第二个位置
ax3 = fig.add_subplot(2,2,3)    #创建一个2*2的子图,放在第三个位置
from numpy.random import randn
plt.plot(randn(50).cumsum(),'k--')    #'k--'告诉python要画出黑色的虚线
ax1.hist(randn(100),bins=20,color='k',alpha=0.3)
(3)、调整subplot周围的间距
#调整subplot周围的间距
fig,axes = plt.subplots(2,2,sharex=True,sharey=True)    #直接生成fiure对象和Axes实例(数组)
for i in range(2):
    for j in range(2):
        axes[i, j ].hist(numpy.random.randn(500),bins = 50,color='k',alpha=0.5)     #遍历创建图
plt.subplots_adjust(left=None,bottom=None,right=None,top=None,wspace=0,hspace=0)   #用于调整subplot周围的间距
(4)、颜色、标记和线型
#颜色、标记和线型
plt.figure()
##linestyle设置线型,color设置颜色,marker设置设置连接点
plt.plot(numpy.random.randn(30).cumsum(),linestyle='--',color='g',marker='o')
(5)、设置标题、轴标签,刻度以及刻度标签
#设置标题、轴标签,刻度以及刻度标签
fig = plt.figure()      #创建figure对象
ax = fig.add_subplot(1,1,1)     #获得Axes对象
ax.plot(numpy.random.randn(1000).cumsum())  #生成随机数
ax.set_xticks([0,250,500,750,1000])     #设置x轴刻度
ax.set_yticks([-20,-10,0,10,20])        #设置y轴刻度
ax.set_title('My first matplotlib plot')    #设置标题
ax.set_xlabel('Xtages')     #设置x轴标签
ax.set_ylabel('Ytages')     #设置y轴标签
(6)、添加图例
#添加图例
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.plot(numpy.random.randn(1000).cumsum(),'k',label='one')  #label标签用于添加图例
ax.plot(numpy.random.randn(1000).cumsum(),'k',label='two')
ax.plot(numpy.random.randn(1000).cumsum(),'k',label='three')
ax.legend(loc='best')       #loc选项可以选择图例的位置
(7)、添加注释
#添加注释
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.plot(numpy.random.randn(1000).cumsum(),'k',label='one')  #label标签用于添加图例
plt.annotate("Important value", (55,20), xycoords='data',   #添加注释的方法
         xytext=(5, 38),
         arrowprops=dict(arrowstyle='->'))
(8)、绘制常用图形
#绘制常用图形
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
rect = plt.Rectangle((0.2,0.75),0.4,0.15,color='k',alpha=0.3)   #长方形
circ = plt.Circle((0.7,0.2),0.15,color='b',alpha=0.3)           #椭圆形
ax.add_patch(rect)      #添加到图版中
ax.add_patch(circ)
(9)、图表的导出
#图表的保存
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
rect = plt.Rectangle((0.2,0.75),0.4,0.15,color='k',alpha=0.3)   #长方形
ax.add_patch(rect)      #添加到图版中
fig.savefig('figpath.png',dpi = 400,bbox_inches='tight')  #dpi可以控制图象的分辨率,bbox_inches可以剪除图表的空白部分
AI实战-加拿大的工业产品价格指数数据集分析预测实例(含4个源代码+18.20 MB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:4个代码,共38.64 KB;数据大小:1个文件共18.20 MB。 使用到的模块: numpy pandas os sklearn.model_selection.train_test_split tensorflow.keras.models.Sequential tensorflow.keras.layers.Dense sklearn.impute.KNNImputer sklearn.impute.IterativeImputer sklearn.linear_model.LinearRegression matplotlib.pyplot sklearn.datasets.make_blobs sklearn.cluster.DBSCAN sklearn.neighbors.LocalOutlierFactor sklearn.ensemble.IsolationForest sklearn.svm.OneClassSVM sklearn.preprocessing.MinMaxScaler sklearn.preprocessing.StandardScaler sklearn.preprocessing.MaxAbsScaler sklearn.preprocessing.RobustScaler sklearn.preprocessing.PowerTransformer sklearn.preprocessing.QuantileTransformer sklearn.preprocessing.OneHotEncoder sklearn.preprocessing.LabelEncoder category_encoders seaborn sklearn.cluster.KMeans sklearn.metrics.silhouette_score sklearn.decomposition.PCA sklearn.datasets.load_iris scipy.cluster.hierarchy.linkage scipy.cluster.hierarchy.dendrogram sklearn.cluster.AgglomerativeClustering sklearn.mixture.GaussianMixture matplotlib warnings sklearn.metrics.mean_squared_error sklearn.metrics.r2_score plotly.express sklearn.ensemble.RandomForestRegressor sklearn.ensemble.GradientBoostingRegressor catboost.CatBoostRegressor sklearn.metrics.mean_absolute_error sklearn.model_selection.RandomizedSearchCV statsmodels.tsa.arima.model.ARIMA
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

辣椒种子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值