leetcode算法面试题:恢复二叉搜索树、将有序数组转换为二叉搜索树

恢复二叉搜索树

给你二叉搜索树的根节点 root ,该树中的两个节点被错误地交换。请在不改变其结构的情况下,恢复这棵树。

进阶:使用 O(n) 空间复杂度的解法很容易实现。你能想出一个只使用常数空间的解决方案吗?

示例 1:

输入:root = [1,3,null,null,2]
输出:[3,1,null,null,2]
解释:3 不能是 1 左孩子,因为 3 > 1 。交换 1 和 3 使二叉搜索树有效。

示例 2:

输入:root = [3,1,4,null,null,2]
输出:[2,1,4,null,null,3]
解释:2 不能在 3 的右子树中,因为 2 < 3 。交换 2 和 3 使二叉搜索树有效。

提示:

  • 树上节点的数目在范围 [2, 1000] 内

  • -231 <= Node.val <= 231 - 1

参考答案

class Solution {
public:
    void recoverTree(TreeNode* root) {
        TreeNode *x = nullptr, *y = nullptr, *pred = nullptr, *predecessor = nullptr;
 
        while (root != nullptr) {
            if (root->left != nullptr) {
                // predecessor 节点就是当前 root 节点向左走一步,然后一直向右走至无法走为止
                predecessor = root->left;
                while (predecessor->right != nullptr && predecessor->right != root) {
                    predecessor = predecessor->right;
                }
                
                // 让 predecessor 的右指针指向 root,继续遍历左子树
                if (predecessor->right == nullptr) {
                    predecessor->right = root;
                    root = root->left;
                }
                // 说明左子树已经访问完了,我们需要断开链接
                else {
                    if (pred != nullptr && root->val < pred->val) {
                        y = root;
                        if (x == nullptr) {
                            x = pred;
                        }
                    }
                    pred = root;
 
                    predecessor->right = nullptr;
                    root = root->right;
                }
            }
            // 如果没有左孩子,则直接访问右孩子
            else {
                if (pred != nullptr && root->val < pred->val) {
                    y = root;
                    if (x == nullptr) {
                        x = pred;
                    }
                }
                pred = root;
                root = root->right;
            }
        }
        swap(x->val, y->val);
    }
};

将有序数组转换为二叉搜索树

给你一个整数数组 nums ,其中元素已经按 升序 排列,请你将其转换为一棵 高度平衡 二叉搜索树。

高度平衡 二叉树是一棵满足「每个节点的左右两个子树的高度差的绝对值不超过 1 」的二叉树。

示例 1:

输入:nums = [-10,-3,0,5,9]
输出:[0,-3,9,-10,null,5]
解释:[0,-10,5,null,-3,null,9] 也将被视为正确答案:

示例 2:

输入:nums = [1,3]
输出:[3,1]
解释:[1,3] 和 [3,1] 都是高度平衡二叉搜索树。

提示:

  • 1 <= nums.length <= 104

  • -104 <= nums[i] <= 104

  • nums 按 严格递增 顺序排列

参考答案

class Solution {
public:
    TreeNode* sortedArrayToBST(vector<int>& nums) {
        return helper(nums, 0, nums.size() - 1);
    }
 
    TreeNode* helper(vector<int>& nums, int left, int right) {
        if (left > right) {
            return nullptr;
        }
 
        // 选择任意一个中间位置数字作为根节点
        int mid = (left + right + rand() % 2) / 2;
 
        TreeNode* root = new TreeNode(nums[mid]);
        root->left = helper(nums, left, mid - 1);
        root->right = helper(nums, mid + 1, right);
        return root;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值