数据结构与算法:图的遍历

图的遍历是和树的遍历类似,我们希望从图中某一顶点出发访遍图中其余顶点,且使每一个顶点仅被访问一次,这一过程就叫做图的遍历(Traversing Graph)。

树的遍历我们谈到了四种方案,应该说都还好,毕竟根结点只有一个,遍历都是从它发起,其余所有结点都只有一个双亲。可图就复杂多了,因为它的任一顶点都可能和其余的所有顶点相邻接,极有可能存在沿着某条路径搜索后,又回到原顶点,而有些顶点却还没有遍历到的情况。因此我们需要在遍历过程中把访问过的顶点打上标记,以避免访问多次而不自知。具体办法是设置一个访问数组visited[n],n是图中顶点的个数,初值为0,访问过后设置为1。这其实在小说中常常见到,一行人在迷宫中迷了路,为了避免找寻出路时屡次重复,所以会在路口用小刀刻上标记。

对于图的遍历来说,如何避免因回路陷入死循环,就需要科学地设计遍历方案,通常有两种遍历次序方案:它们是深度优先遍历和广度优先遍历。

深度优先遍历

深度优先遍历(Depth_First_Search),也有称为深度优先搜索,简称为DFS。它的具体思想就如同我刚才提到的找钥匙方案,无论从哪一间房间开始都可以,比如主卧室,然后从房间的一个角开始,将房间内的墙角、床头柜、床上、床下、衣柜里、衣柜上、前面的电视柜等挨个寻找,做到不放过任何一个死角,所有的抽屉、储藏柜中全部都找遍,形象比喻就是翻个底朝天,然后再寻找下一间,直到找到为止。

假设你需要完成一个任务,要求你在如下图左图这样的一个迷宫中,从顶点A开始要走遍所有的图顶点并作上标记,注意不是简单地看着这样的平面图走哦,而是如同现实般地在只有高墙和通道的迷宫中去完成任务。

在这里插入图片描述

首先我们从顶点A开始,做上表示走过的记号后,面前有两条路,通向B和F,我们给自己定一个原则,在没有碰到重复顶点的情况下,始终是向右手边走,于是走到了B顶点。整个行路过程,可参看上图的右图。此时发现有三条分支,分别通向顶点C、I、G,右手通行原则,使得我们走到了C顶点。就这样,我们一直顺着右手通道走,一直走到F顶点。当我们依然选择右手通道走过去后,发现走回到顶点A了,因为在这里做了记号表示已经走过。此时我们退回到顶点F,走向从右数的第二条通道,到了G顶点,它有三条通道,发现B和D都已经是走过的,于是走到H,当我们面对通向H的两条通道D和E时,会发现都已经走过了。

此时我们是否已经遍历了所有顶点呢?没有。可能还有很多分支的顶点我们没有走到,所以我们按原路返回。在顶点H处,再无通道没走过,返回到G,也无未走过通道,返回到F,没有通道,返回到E,有一条通道通往H的通道,验证后也是走过的,再返回到顶点D,此时还有三条道未走过,一条条来,H走过了,G走过了,I,哦,这是一个新顶点,没有标记,赶快记下来。继续返回,直到返回顶点A,确认你已经完成遍历任务,找到了所有的9个顶点。

如果我们用的是邻接矩阵的方式,则代码如下:

/* Boolean是布尔类型,其值是TRUE或FALSE */
typedef int Boolean;             
/* 访问标志的数组 */
Boolean visited[MAX];            
/* 邻接矩阵的深度优先递归算法 */
void DFS(MGraph G, int i)
{
    int j;
    visited[i] = TRUE;
    /* 打印顶点,也可以其他操作 */
    printf("%c ", G.vexs[i]);    
    for (j = 0; j < G.numVertexes; j++)
        if (G.arc[i][j] == 1 && !visited[j])
            /* 对为访问的邻接顶点递归调用 */
            DFS(G, j);           
}
/* 邻接矩阵的深度遍历操作 */
void DFSTraverse(MGraph G)
{
    int i;
    for (i = 0; i < G.numVertexes; i++)
        /* 初始所有顶点状态都是未访问过状态 */
        visited[i] = FALSE;      
    for (i = 0; i < G.numVertexes; i++)
        /* 对未访问过的顶点调用DFS,若是连通图,只会执行一次 */
        if (!visited[i])         
            DFS(G, i);
}

代码的执行过程,其实就是我们刚才迷宫找寻所有顶点的过程。

如果图结构是邻接表结构,其DFSTraverse函数的代码是几乎相同的,只是在递归函数中因为将数组换成了链表而有不同,代码如下。

/* 邻接表的深度优先递归算法 */
void DFS(GraphAdjList GL, int i)
{
    EdgeNode *p;
    visited[i] = TRUE;
    /* 打印顶点,也可以其他操作 */
    printf("%c ", GL->adjList[i].data);    
    p = GL->adjList[i].firstedge;
    while (p)
    {
        if (!visited[p->adjvex])
            /* 对为访问的邻接顶点递归调用 */
            DFS(GL, p->adjvex);            
        p = p->next;
    }
}
/* 邻接表的深度遍历操作 */
void DFSTraverse(GraphAdjList GL)
{
    int i;
    for (i = 0; i < GL->numVertexes; i++)
        /* 初始所有顶点状态都是未访问过状态 */
        visited[i] = FALSE;                
    for (i = 0; i < GL->numVertexes; i++)
        /* 对未访问过的顶点调用DFS,若是连通图,只会执行一次 */
        if (!visited[i])                   
            DFS(GL, i);
}

对比两个不同存储结构的深度优先遍历算法,对于n个顶点e条边的图来说,邻接矩阵由于是二维数组,要查找每个顶点的邻接点需要访问矩阵中的所有元素,因此都需要O(n2)的时间。而邻接表做存储结构时,找邻接点所需的时间取决于顶点和边的数量,所以是O(n+e)。显然对于点多边少的稀疏图来说,邻接表结构使得算法在时间效率上大大提高。

对于有向图而言,由于它只是对通道存在可行或不可行,算法上没有变化,是完全可以通用的。

广度优先遍历

如果说图的深度优先遍历类似树的前序遍历,那么图的广度优先遍历就类似于树的层序遍历了。我们将上图的第一幅图稍微变形,变形原则是顶点A放置在最上第一层,让与它有边的顶点B、F为第二层,再让与B和F有边的顶点C、I、G、E为第三层,再将这四个顶点有边的D、H放在第四层,如下图的第二幅图所示。此时在视觉上感觉图的形状发生了变化,其实顶点和边的关系还是完全相同的。

在这里插入图片描述

/* 邻接矩阵的广度遍历算法 */
void BFSTraverse(MGraph G)
{
    int i, j;
    Queue Q;
    for (i = 0; i < G.numVertexes; i++)
        visited[i] = FALSE;
    /* 初始化一辅助用的队列 */
    InitQueue(&Q);                                   
    /* 对每一个顶点做循环 */
    for (i = 0; i < G.numVertexes; i++)              
    {
        /* 若是未访问过就处理 */
        if (!visited[i])                             
        {
            /* 设置当前顶点访问过 */
            visited[i]=TRUE;                         
            /* 打印顶点,也可以其他操作 */
            printf("%c ", G.vexs[i]);                
            /* 将此顶点入队列 */
            EnQueue(&Q,i);                           
            /* 若当前队列不为空 */
            while (!QueueEmpty(Q))                   
            {
                /* 将队中元素出队列,赋值给i */
                DeQueue(&Q, &i);                     
                for (j = 0; j < G.numVertexes; 
                   {
                    /* 判断其他顶点若与当前顶点存在边且未访问过 */
                    if (G.arc[i][j] == 1 && !visited[j])
                    {
                        /* 将找到的此顶点标记为已访问 */
                        visited[j]=TRUE;             
                        /* 打印顶点 */
                        printf("%c ", G.vexs[j]);    
                        /* 将找到的此顶点入队列 */
                        EnQueue(&Q,j);               
                    }
                }
            }
        }
    }
}

对于邻接表的广度优先遍历,代码与邻接矩阵差异不大,代码如下。

/* 邻接表的广度遍历算法 */
void BFSTraverse(GraphAdjList GL)
{
    int i;
    EdgeNode *p;
    Queue Q;
    for (i = 0; i < GL->numVertexes; i++)
        visited[i] = FALSE;
    InitQueue(&Q);
    for (i = 0; i < GL->numVertexes; i++)
    {
        if (!visited[i])
        {
            visited[i] = TRUE;
            /* 打印顶点,也可以其他操作 */
            printf("%c ", GL->adjList[i].data);    
            EnQueue(&Q, i);
            while (!QueueEmpty(Q))
            {
                DeQueue(&Q, &i);
                /* 找到当前顶点边表链表头指针 */
                p = GL->adjList[i].firstedge;      
                while (p)
                {
                    /* 若此顶点未被访问 */
                    if (!visited[p->adjvex])       
                    {
                        visited[p->adjvex] = TRUE;
                        printf("%c ", GL->adjList[p->adjvex].data);
                            /* 将此顶点入队列 */
                        EnQueue(&Q, p->adjvex);    
                    }
                    /* 指针指向下一个邻接点 */
                    p = p->next;                   
                }
            }
        }
    }
}

对比图的深度优先遍历与广度优先遍历算法,你会发现,它们在时间复杂度上是一样的,不同之处仅仅在于对顶点访问的顺序不同。可见两者在全图遍历上是没有优劣之分的,只是视不同的情况选择不同的算法。

不过如果图顶点和边非常多,不能在短时间内遍历完成,遍历的目的是为了寻找合适的顶点,那么选择哪种遍历就要仔细斟酌了。深度优先更适合目标比较明确,以找到目标为主要目的的情况,而广度优先更适合在不断扩大遍历范围时找到相对最优解的情况。

【问题描述】 从中某个顶点出发访问中所有顶点,且使得每一顶点仅被访问一次,这个过程称为遍历遍历是从中某个顶点出发,沿着某条搜索路径对中其余每个顶点进行访问, 并且使中的每个顶点仅被访问一次的过程。 遍历运算中最重要的运算,也是的基本运算之一,的许多运算都是以遍历为基础的。试编写一个程序,完成对遍历。 【基本要求】 1.以邻接矩阵为存储结构,实现无向深度优先遍历和广度优先遍历。 2.分别输出每种遍历下的结点访问序列.从中某个顶点出发,沿着某条搜索路径对中每个顶点各做一次且仅做一次访问。它是许多算法的基础。 【遍历介绍】 一、基本概念 遍历: 中某个顶点出发访问中所有顶点,且使得每一顶点仅被访问一次,这个过程称为遍历遍历是从中某个顶点出发,沿着某条搜索路径对中其余每个顶点进行访问, 并且使中的每个顶点仅被访问一次的过程。 遍历运算中最重要的运算,也是的基本运算之一,的许多运算都是以遍历为基础的。 二、 分类 按照搜索途径的不同,遍历可分为:深度优先遍历(Depth-First Traverse)和广度优先遍历(Breadth-First Traverse)两大类。深度优先遍历和广度优先遍历是最为重要的两种遍历的方法。 深度优先遍历 (Depth-First Traverse) 特点:尽可能先对纵深方向的顶点进行访问 1.深度优先遍历的递归定义 假设给定G的初态是所有顶点均未曾访问过。在G中任选一顶点v为初始出发点(源点),则深度优先遍历可定义如下:首先访问出发点v,并将其标记为已访问过;然后依次从v出发搜索v的每个邻接点w。若w未曾访问过,则以w为新的出发点继续进行深度优先遍历,直至中所有和源点v有路径相通的顶点(亦称为从源点可达的顶点)均已被访问为止。若此时中仍有未访问的顶点,则另选一个尚未访问的顶点作为新的源点重复上述过程,直至中所有顶点均已被访问为止。 深度优先遍历类似于树的前序遍历。采用的搜索方法的特点是尽可能先对纵深方向进行搜索。这种搜索方法称为深度优先搜索(Depth-First Search)。相应地,用此方法遍历就很自然地称之为深度优先遍历。 2. 深度优先搜索的过程 a 基本思想: 首先访问中某一个指定的出发点Vi; 然后任选一个顶点Vi相邻的未被访问过的顶点Vj; 以Vj为新的出发点继续进行深度优先搜索,直至中所有顶点均被访问过。 b具体过程: 设x是当前被访问顶点,在对x做过访问标记后,选择一条从x出发的未检测过的边(x,y)。若发现顶点y已访问过,则重新选择另一条从x出发的未检测过的边,否则沿边(x,y)到达未曾访问过的y,对y访问并将其标记为已访问过;然后从y开始搜索,直到搜索完从y出发的所有路径,即访问完所有从y出发可达的顶点之后,才回溯到顶点x,并且再选择一条从x出发的未检测过的边。上述过程直至从x出发的所有边都已检测过为止。此时,若x不是源点,则回溯到在x之前被访问过的顶点;否则中所有和源点有路径相通的顶点(即从源点可达的所有顶点)都已被访问过,若G是连通,则遍历过程结束,否则继续选择一个尚未被访问的顶点作为新源点,进行新的搜索过程。
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

辣椒种子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值