机器学习之机器学习的四个标签

本文介绍了机器学习的四种主要类型:监督学习(包括图像识别和回归)、无监督学习(如数据可视化和聚类)、自监督学习(如自编码机)以及强化学习。作者强调了本书将集中于监督学习,但也会涉及自监督学习和其他变种如序列生成和图像分割。
摘要由CSDN通过智能技术生成

文章代码来源:《deep learning on keras》,非常好的一本书,大家如果英语好,推荐直接阅读该书,如果时间不够,可以看看此系列文章。


通过之前的学习,大家知道机器学习中的核心问题为过拟合。
学完这一章,大家能够收获:

  • 其它版本的一些机器学习,除了回归和分类问题。
  • 机器学习模型的正式评价程序,你们在之前已经看到了其简单的版本
  • 如何为机器学习备好数据,什么是“特征工程”
  • 学习解决过拟合问题,我们在之前的几个例子里面也看到了这个过拟合现象。

机器学习的四个标签

通过刚刚三种问题,你应该已经熟悉了三种特别的机器学习问题:二分类、多分类、回归问题。
然而这些问题都属于监督学习的范畴,在机器学习领域监督学习只是其冰山一角,我们将机器学习通常分为四类:

  • 监督学习,近期图像识别,语音识别等都聚焦于此。
  • 无监督学习,即不需要任何标签,可以用来数据可视化、数据压缩、数据去噪或是简单的更好理解手头数据的表示,无监督学习是数据分析的“bread and butter”基础,这在监督学习之前使用是很有必要的。“维度下降”和“聚类”是熟知的无监督学习类型。
  • 自监督学习&#
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

辣椒种子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值