文章代码来源:《deep learning on keras》,非常好的一本书,大家如果英语好,推荐直接阅读该书,如果时间不够,可以看看此系列文章。
通过之前的学习,大家知道机器学习中的核心问题为过拟合。
学完这一章,大家能够收获:
- 其它版本的一些机器学习,除了回归和分类问题。
- 机器学习模型的正式评价程序,你们在之前已经看到了其简单的版本
- 如何为机器学习备好数据,什么是“特征工程”
- 学习解决过拟合问题,我们在之前的几个例子里面也看到了这个过拟合现象。
机器学习的四个标签
通过刚刚三种问题,你应该已经熟悉了三种特别的机器学习问题:二分类、多分类、回归问题。
然而这些问题都属于监督学习的范畴,在机器学习领域监督学习只是其冰山一角,我们将机器学习通常分为四类:
- 监督学习,近期图像识别,语音识别等都聚焦于此。
- 无监督学习,即不需要任何标签,可以用来数据可视化、数据压缩、数据去噪或是简单的更好理解手头数据的表示,无监督学习是数据分析的“bread and butter”基础,这在监督学习之前使用是很有必要的。“维度下降”和“聚类”是熟知的无监督学习类型。
- 自监督学习&#
本文介绍了机器学习的四种主要类型:监督学习(包括图像识别和回归)、无监督学习(如数据可视化和聚类)、自监督学习(如自编码机)以及强化学习。作者强调了本书将集中于监督学习,但也会涉及自监督学习和其他变种如序列生成和图像分割。
订阅专栏 解锁全文
14万+

被折叠的 条评论
为什么被折叠?



